Patents Examined by Vynn V Huh
  • Patent number: 11291841
    Abstract: In some examples, an implantable medical device (IMD) including a hermetically sealed housing that is configured to enclose internal components. The internal components may include stimulation circuitry, processing circuitry configured to control the stimulation circuitry to deliver electrical stimulation using one or more leads received by the housing, telemetry circuitry, and a rechargeable power source. The IMD may also include a coil configured to at least one of receive energy to recharge the rechargeable power source or receive and/or transmit signals for wireless telemetry with another device, wherein the implantable medical device is configured to mount to a cranium of a patient, and wherein the coil is coiled about an axis that is approximately orthogonal to a major surface of the IMD.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: April 5, 2022
    Assignee: Medtronic, Inc.
    Inventors: Nicholas R. Whitehead, Venkat R. Gaddam, Erik R. Scott, Randy S. Roles, Don A. Rutledge
  • Patent number: 11273323
    Abstract: A light therapy apparatus includes a pad comprising at least a first layer and a second layer and a side scattering light guide mounted between the first layer and the second layer and having a first end and a second end. The first end and the second end extend in parallel with each other externally from the pad, the side scattering light guide extends from at least one of the first end or the second end in a sinusoidal shape or an inward extending circular spiral between the first layer and the second layer, and at least one of the first layer or the second layer is translucent.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: March 15, 2022
    Inventor: John Stephan
  • Patent number: 11241587
    Abstract: Apparatus for illuminating comprises one or more fibers, the one or more fibers including fiber portions meeting at an apex and a bottom location to form a three dimensional cage; a detector attached to each of the fiber portions for receiving light and transmitting light along each of the fiber portions, respectively; and an illumination member situated within the cage. A method for illuminating a hollow member includes the steps of inserting one or more fibers into the hollow member, wherein one or more fibers include fiber portions that meet at a location to form a three-dimensional cage; permitting light to emit from within the three-dimensional cage and towards the fiber portions; receiving light at distinct locations on each of said fibers; and allowing each of the fibers to transmit the light received on each of the fiber portions out of the hollow member.
    Type: Grant
    Filed: October 10, 2016
    Date of Patent: February 8, 2022
    Assignees: Theralase Technologies, Inc., University Health Network
    Inventors: Lothar Lilge, Arkady Mandel, Wayne Embree, Don Lem, Jenny Wu, Roger Dumoulin-White
  • Patent number: 11241576
    Abstract: The present embodiment is an implantable device capable of controlling cochlear implant electrode insertion and positioning. The embodiment uses an implanted mechanical positioning unit to advance position and monitor an electrode array. The device can be controlled via an external controller to reposition or advance an electrode array at any point after implantation with no surgical re-intervention. A cochlear implant electrode array whose position can be advanced and modified over time to best fit a patient's evolving hearing pattern would improve functional outcomes and significantly expand the candidacy range for cochlear implantation to include patients with substantial residual hearing.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: February 8, 2022
    Assignee: University of Iowa Research Foundation
    Inventors: Marlan R. Hansen, Christopher Kaufmann
  • Patent number: 11235159
    Abstract: VfA cardiac therapy uses an implantable medical device or system. The implantable medical device includes a tissue-piercing electrode implanted in the basal and/or septal region of the left ventricular myocardium of the patient's heart from the triangle of Koch region of the right atrium through the right atrial endocardium and central fibrous body. The device may include a right atrial electrode, a right atrial motion detector, or both. The device may be implanted completely within the patient's heart or may use one or more leads to implant electrodes in the patient's heart. The device may be used to provide cardiac therapy, including single or multiple chamber pacing, atrioventricular synchronous pacing, asynchronous pacing, triggered pacing, cardiac resynchronization pacing, or tachycardia-related therapy. A separate medical device may be used to provide some functionality for cardiac therapy, such as sensing, pacing, or shock therapy.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: February 1, 2022
    Assignee: Medtronic, Inc.
    Inventors: Zhongping Yang, Thomas A. Anderson, Brian P. Colin, William J. Clemens, Subham Ghosh, Jeffrey M. Gillberg, Maurice T. I. Verbeek, Toine Camps, Lilian Kornet, Berthold Stegemann, Jean Rutten
  • Patent number: 11234766
    Abstract: A steerable laser probe may include a handle having a handle distal end and a handle proximal end, an actuation lever of the handle, a flexible housing tube having a flexible housing tube distal end and a flexible housing tube proximal end, and an optic fiber disposed within an inner bore of the handle and the flexible housing tube. An actuation of the actuation lever may gradually curve the flexible housing tube and the optic fiber. An actuation of the actuation lever may gradually straighten the flexible housing tube and the optic fiber.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: February 1, 2022
    Inventors: Gregg D. Scheller, Matthew N Zeid
  • Patent number: 11229361
    Abstract: A system includes an implant configured to be inserted subcutaneously into an individual, a transceiver configured to communicate wirelessly with the implant, and a database provided with at least one of the transceiver, a user device, and a remote storage device. The implant includes a sensor module configured to measure data relating to a health of the individual. The transceiver is configured to provide a first signal to the implant that conveys energy to power the implant and a second signal to the transceiver that contains the data. The database is operatively coupled to the transceiver and configured to store the data. The at least one of the transceiver, the user device, and the remote storage device include a processing circuit configured to access the database and provide the data to a user.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: January 25, 2022
    Inventors: Aidan Coen, Brietta Coen, Avonna Niegelsen, Sarah Scanlan, Lucy Schrieber, Mary Schrieber, Hannah Schulgen, Olivia Sween
  • Patent number: 11229357
    Abstract: A laser surgery system includes a light source, an eye interface device, a scanning assembly, a confocal detection assembly and preferably a confocal bypass assembly. The light source generates an electromagnetic beam. The scanning assembly scans a focal point of the electromagnetic beam to different locations within the eye. An optical path propagates the electromagnetic beam from a light source to the focal point, and also propagates a portion of the electromagnetic beam reflected from the focal point location back along at least a portion of the optical path. The optical path includes an optical element associated with a confocal detection assembly that diverts a portion of the reflected electromagnetic radiation to a sensor. The sensor generates an intensity signal indicative of intensity the electromagnetic beam reflected from the focal point location. The confocal bypass assembly reversibly diverts the electromagnetic beam along a diversion optical path around the optical element.
    Type: Grant
    Filed: November 12, 2018
    Date of Patent: January 25, 2022
    Assignee: AMO Development, LLC
    Inventors: Georg Schuele, Noah Bareket, David Dewey, John S. Hart, Javier G. Gonzalez, Raymond Woo, Thomas Z. Teisseyre, Jeffrey A. Golda, Katrina B. Sheehy, Madeleine C O'Meara, Bruce Woodley
  • Patent number: 11173304
    Abstract: A three-dimensional electrode device and a method for manufacturing the same are disclosed. A three-dimensional electrode device as disclosed can be in close contact with target cells in a retina without damaging the retina to apply electrical stimulation to the retina. The three-dimensional electrode device can include a board prepared to be inserted into a photoreceptor layer in an eyeball and formed of a transparent material; and a plurality of electrodes formed on the board and configured to stimulate a retina. The board can be prepared to be deformed corresponding to a shape of the retina and configured to make the electrodes be in close contact with the retina.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: November 16, 2021
    Assignee: DAEGU GYEONGBUK INSTITUTE OF SCIENCE & TECHNOLOGY
    Inventors: So Hee Kim, Hee Won Seo
  • Patent number: 11110295
    Abstract: Light stimulation systems and methods for elevating testosterone levels in male patients.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: September 7, 2021
    Assignee: Kemeny Healthcare Inc.
    Inventors: Csaba Truckai, John H. Shadduck, Akos Toth
  • Patent number: 11110284
    Abstract: A medical device lead connection assembly includes an end connector element including a plurality of fixed connection element tabs extending from the end connector element to a tab distal end. A lead body includes a plurality of lead filars extending through the lead body and coupled to a corresponding fixed connection tab. A tubular guide hub extends from a hub proximal end to a hub distal end. The tubular guide hub includes a plurality of guide elements circumferentially disposed about an outer surface of the guide hub. The hub distal end is disposed within the lead body and the hub proximal end received within connection element tabs, and selected guide elements contact selected lead filars.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: September 7, 2021
    Assignee: Medtronic, Inc.
    Inventors: Darren Janzig, Robert J. Davies, Seth M. Humphrys, Richard T. Stone
  • Patent number: 11089993
    Abstract: [Problem] To provide means by which sleep states can be measured, observed, or evaluated easily. [Solution] A sleep state measurement device that includes a phase coherence calculating means for calculating phase coherence on the basis of the instantaneous phase difference between the instantaneous phase of heart rate variability acquired from a sleeping animal and the instantaneous phase of the breathing pattern of the animal for the same time series as the heart rate variability.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: August 17, 2021
    Assignee: Health Sensing Co., Ltd.
    Inventors: Masatomo Kanegae, Tsutomu Fujita, Kyuichi Niizeki
  • Patent number: 11045645
    Abstract: This disclosure relates to an implantable lead for electrical stimulation of an organ and/or for collecting electrical potentials on this organ. The lead comprises a distal termination able to come into contact with the tissues of an organ, the termination comprising an insulating substrate and at least one conductive interface carried by the substrate. The lead further comprises a lead body having at least one bonding conductor connected to a respective conductive interface. The conductive interface comprises at least one deformable conductive wire with a woven, embroidered, braided or knitted configuration for anchoring the deformable wire to the substrate.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: June 29, 2021
    Assignee: Sorin CRM SAS
    Inventors: Maxime Rault, Patrick Le Gousse
  • Patent number: 11033233
    Abstract: A person support apparatus includes sensors for monitoring aspects of a person positioned thereon. The outputs from the sensors are used to distinguish between new and prior occupants of the support apparatus, automatically zero an integrated scale system, distinguish between objects and humans on the support apparatus, determine if a person is sleeping or awake, monitor and characterize movement levels of the person, record a log of likely events regarding a support surface of the apparatus, propose identifications of objects added to or removed from the support surface, record force outputs, and/or other purposes. A person's sleep state may also be obtained and forwarded to a remote location. The sleep state data may be used to mute and/or control alerts or indicators, and/or to predict when a person is going to wake up and likely exit the support apparatus.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: June 15, 2021
    Assignee: Stryker Corporation
    Inventors: Michael Joseph Hayes, David Terrance Becker, Annie Désaulniers, Aaron Douglas Furman, Brandon J. Buckingham, Michael W. Steffler, Richard A. Derenne, Joshua Elmer Mix
  • Patent number: 11033431
    Abstract: Embodiments of this invention generally relate to ophthalmic laser procedures and, more particularly, to systems and methods for creating synchronized three-dimensional laser incisions. In an embodiment, an ophthalmic surgical laser system comprises a laser delivery system for delivering a pulsed laser beam to a target in a subject's eye, an XY-scan device to deflect the pulsed laser beam, a Z-scan device to modify a depth of a focus of the pulsed laser beam, and a controller configured to synchronize an oscillation of the XY-scan device and an oscillation of the Z-device to form an angled three-dimensional laser tissue dissection.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: June 15, 2021
    Assignee: AMO Development, LLC
    Inventors: Hong Fu, Patrick De Guzman, Robert Heitel, Alireza Malek Tabrizi
  • Patent number: 11033741
    Abstract: Neuromodulation is used to enhance left ventricular relaxation. An exemplary neuromodulation system includes a therapy element positionable in proximity to at least one nerve fiber, and a stimulator configured to energize the therapy element to delivery therapy to the at least one nerve fiber such that left ventricular relaxation and left ventricular contractility are contemporaneously enhanced.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: June 15, 2021
    Assignee: NuXcel Limited
    Inventors: Michael Cuchiara, Stephen C Masson
  • Patent number: 11020009
    Abstract: According to an embodiment, a user terminal includes a processor; a blood pressure sensor; and a temperature sensor. The processor is configured to control whether or not to enable transmission of the blood pressure data obtained by the blood pressure sensor based on whether or not any of at least one transmission condition is satisfied; and transmit the blood pressure data when the transmission of the blood pressure data was enabled. The transmission condition include a condition satisfied when a fluctuation of temperature in a latest unit time of measurement time of the blood pressure data exceeds a threshold, the temperature being indicated by the temperature data obtained by the temperature sensor.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: June 1, 2021
    Assignees: OMRON CORPORATION, OMRON HEALTHCARE CO., LTD.
    Inventors: Hiroshi Nakajima, Hirotaka Wada, Tamio Ueda, Daisuke Nozaki
  • Patent number: 10994145
    Abstract: An implantable cardiac monitor (ICM) may be configured to be deployed subcutaneous, submuscular, or substernal at a position that enables the ICM to detect cardiac activity. In some cases, the ICM includes a housing that includes a body portion and a tail portion. A first electrode may be disposed adjacent a first end of the body portion, a second electrode may be disposed adjacent a second end of the body portion and a third electrode may be disposed adjacent a tail end of the tail portion. A controller may be disposed within the housing and may be operably coupled to the first electrode, the second electrode and the third electrode. The controller may be configured to select a pair of the first electrode, the second electrode and the third electrode to use for sensing cardiac electrical activity and to communicate information about the sensed activity to a second medical device.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: May 4, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Brendan Early Koop, Lance Eric Juffer, Michael J. Kane, Benjamin J. Haasl, Keith R. Maile, Arthur J. Foster
  • Patent number: 10967177
    Abstract: A method for stimulating a human leg, a stimulation system, and a garment including the stimulation system are disclosed. The method comprises: measuring, by a measuring unit, an electrical characteristic indicative of a physiological condition in a portion of the leg via a subset of skin electrodes comprised in a plurality of skin electrodes integrated in a leg part of a garment arranged to be worn about at least a part of the human leg; determining, by evaluating the measured electrical characteristic, if the portion of the leg is to be stimulated; and if it is determined that the portion is to be stimulated, applying a stimulation via a subset of stimulation units, comprised in a plurality of stimulation units being arranged in the leg part of the garment, such that the portion of the leg is stimulated. A stimulation system and a garment comprising such as stimulation system are also disclosed.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: April 6, 2021
    Assignee: Stichting IMEC Nederland
    Inventor: Seulki Lee
  • Patent number: 10946211
    Abstract: The invention provides a lighting unit configured to generate white light wherein the white light has a spectral intensity in the visible wherein at least 40% of all photons in the wavelength range of 400-500 nm are found in the wavelength range of 430-445 nm (see also FIG. 1b). The lighting unit may especially be used for increasing alertness of a human while not or minimally suppressing melatonin production of the human.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: March 16, 2021
    Assignee: SIGNIFY HOLDING B.V.
    Inventors: Vanja Hommes, Lucas Josef Maria Schlangen, Marina Cecilia Gimenez, Debra Jean Skene, Victoria Louise Revell