Patents by Inventor A. Mrstik

A. Mrstik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8654016
    Abstract: Methods and apparatus for determining parameters for an array are described. An exemplary embodiment of a method determines a set of parameters for an antenna array including multiple array elements, the array being fed by a feed array including a plurality of feed elements. The embodiment of the method includes measuring a plurality of bistatic ranges Rijk through different signal path combinations, each signal path combination from a feed element “i,” to an array element “j,” and to a feed element “k”. The measuring includes radiating energy from feed element “i”, and reflecting some of the radiated energy from array element “j” back to feed element k of the feed array. The measured bistatic ranges are processed to solve for the set of parameters.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: February 18, 2014
    Assignee: Raytheon Company
    Inventor: A. Vince Mrstik
  • Patent number: 8330662
    Abstract: Methods and apparatus for determining parameters for an array are described. An exemplary embodiment of a method determines a set of parameters for an antenna array including multiple array elements, the array being fed by a feed array including a plurality of feed elements. The embodiment of the method includes measuring a plurality of bistatic ranges Rijk through different signal path combinations, each signal path combination from a feed element “i,” to an array element “j,” and to a feed element “k”. The measuring includes radiating energy from feed element “i”, and reflecting some of the radiated energy from array element “j” back to feed element k of the feed array. The measured bistatic ranges are processed to solve for the set of parameters.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: December 11, 2012
    Assignee: Raytheon Company
    Inventor: A. Vince Mrstik
  • Patent number: 8021991
    Abstract: Oxide films are deposited under conditions generating a silicon-rich oxide in which silicon nanoclusters form either during deposition or during subsequent annealing. Such deposition conditions include those producing films with optical indices (n) greater than 1.46. The method of the present invention reduces the TID radiation-induced shifts for the oxides.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: September 20, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Harold L Hughes, Bernard J Mrstik, Reed K Lawrence, Patrick J McMarr
  • Publication number: 20110205130
    Abstract: Methods and apparatus for determining parameters for an array are described. An exemplary embodiment of a method determines a set of parameters for an antenna array including multiple array elements, the array being fed by a feed array including a plurality of feed elements. The embodiment of the method includes measuring a plurality of bistatic ranges Rijk through different signal path combinations, each signal path combination from a feed element “i,” to an array element “j,” and to a feed element “k”. The measuring includes radiating energy from feed element “i”, and reflecting some of the radiated energy from array element “j” back to feed element k of the feed array. The measured bistatic ranges are processed to solve for the set of parameters.
    Type: Application
    Filed: February 23, 2010
    Publication date: August 25, 2011
    Inventor: A. Vince Mrstik
  • Publication number: 20100157280
    Abstract: An apparatus and method for aligning a line scan camera with a Light Detection and Ranging (LiDAR) scanner for real-time data fusion in three dimensions is provided. Imaging data is captured at a computer processor simultaneously from the line scan camera and the laser scanner from target object providing scanning targets defined in an imaging plane perpendicular to focal axes of the line scan camera and the LiDAR scanner. X-axis and Y-axis pixel locations of a centroid of each of the targets from captured imaging data is extracted. LiDAR return intensity versus scan angle is determined and scan angle locations of intensity peaks which correspond to individual targets is determined. Two axis parallax correction parameters are determined by applying a least squares. The correction parameters are provided to post processing software to correct for alignment differences between the imaging camera and LiDAR scanner for real-time colorization for acquired LiDAR data.
    Type: Application
    Filed: December 18, 2009
    Publication date: June 24, 2010
    Applicant: Ambercore Software Inc.
    Inventors: Kresimir Kusevic, Paul Mrstik, Craig Len Glennie
  • Patent number: 7133001
    Abstract: A large aperture lightweight antenna uses an inflatable spherical surface deployed within a lighter than air platform. Beam steering is accomplished by moving the RF feedpoint(s) with respect to the reflector. The antenna can use an inflatable collapsible transreflector.
    Type: Grant
    Filed: November 2, 2004
    Date of Patent: November 7, 2006
    Assignee: Toyon Research Corporation
    Inventors: A. Vincent Mrstik, Michael A. Gilbert, Michael P. Grace
  • Publication number: 20060194454
    Abstract: Oxide films are deposited under conditions generating a silicon-rich oxide in which silicon nanoclusters form either during deposition or during subsequent annealing. Such deposition conditions include those producing films with optical indices (n) greater than 1.46. The method of the present invention reduces the TID radiation-induced shifts for the oxides.
    Type: Application
    Filed: February 28, 2006
    Publication date: August 31, 2006
    Inventors: Harold Hughes, Bernard Mrstik, Reed Lawrence, Patrick McMarr
  • Patent number: 6954173
    Abstract: Techniques for simultaneous measurement of multiple array elements of an array antenna. The array is illuminated with a coherent signal source, and each array element phase shifter is cycled through a range of phase shifter settings at a unique rate. The phase shifted signals from each array element are combined to provide a composite signal. The composite signal is processed to extract the phase of the coherent source signal as received at each element. The phase information is used to determine the location of the elements relative to each other.
    Type: Grant
    Filed: July 2, 2003
    Date of Patent: October 11, 2005
    Assignee: Raytheon Company
    Inventor: A. Vincent Mrstik
  • Publication number: 20050179615
    Abstract: A large aperture lightweight antenna uses an inflatable spherical surface deployed within a lighter than air platform. Beam steering is accomplished by moving the RF feedpoint(s) with respect to the reflector. The antenna can use an inflatable collapsible transreflector.
    Type: Application
    Filed: November 2, 2004
    Publication date: August 18, 2005
    Inventors: A. Mrstik, Michael Gilbert, Michael Grace
  • Publication number: 20050001760
    Abstract: Techniques for simultaneous measurement of multiple array elements of an array antenna. The array is illuminated with a coherent signal source, and each array element phase shifter is cycled through a range of phase shifter settings at a unique rate. The phase shifted signals from each array element are combined to provide a composite signal. The composite signal is processed to extract the phase of the coherent source signal as received at each element. The phase information is used to determine the location of the elements relative to each other.
    Type: Application
    Filed: July 2, 2003
    Publication date: January 6, 2005
    Inventor: A. Mrstik