Patents by Inventor Aaron Callard

Aaron Callard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190254003
    Abstract: Data is scrambled at a transmitter according to one of a number of predetermined scrambling sequences which are associated with a particular one of a number of predetermined transmit antenna diversity schemes (i.e., a specific number of transmit antenna ports). Received data is decoded using one or more of the known transmit antenna diversity schemes and the scrambled data is descrambled according to a corresponding descrambling sequence (related to the scrambling sequence). Based on the descrambled data, the receiver determines which transmit antenna diversity scheme (i.e., the number of antenna ports) is used by the transmitter. In one specific embodiment, CRC parity data is scrambled in the transmitter and the receiver descrambles the recovered CRC parity data according to a descrambling sequence, computes CRC parity data from the received data, and compares the descrambled CRC parity data to the newly computed CRC parity data.
    Type: Application
    Filed: April 29, 2019
    Publication date: August 15, 2019
    Inventors: Aaron Callard, Jianglei Ma
  • Patent number: 10349229
    Abstract: Systems and methods are disclosed herein for an enhanced Multimedia Broadcast Multicast Service (MBMS) in a wireless communications network. In one embodiment, a number of base stations in a MBMS zone, or broadcast region, accommodate both Spatial Multiplexing (SM) enabled user elements and non-SM enabled user elements. In another embodiment, a number of base stations form a MBMS zone, or broadcast region, where the MBMS zone is sub-divided into an SM zone and a non-SM zone. In another embodiment, the wireless communications network includes multiple MBMS zones. For each MBMS zone, base stations serving the MBMS zone transmit an MBMS zone identifier (ID) for the MBMS zone. The MBMS zone ID may be used by a user element for decoding and/or to determine when to perform a handoff from one MBMS zone to another.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: July 9, 2019
    Assignee: Apple Inc.
    Inventors: Jianglei Ma, Aaron Callard, Ming Jia, Wen Tong, Peiying Zhu, Hang Zhang
  • Patent number: 10321432
    Abstract: Data is scrambled at a transmitter according to one of a number of predetermined scrambling sequences which are associated with a particular one of a number of predetermined transmit antenna diversity schemes (i.e., a specific number of transmit antenna ports). Received data is decoded using one or more of the known transmit antenna diversity schemes and the scrambled data is descrambled according to a corresponding descrambling sequence (related to the scrambling sequence). Based on the descrambled data, the receiver determines which transmit antenna diversity scheme (i.e., the number of antenna ports) is used by the transmitter. In one specific embodiment, CRC parity data is scrambled in the transmitter and the receiver descrambles the recovered CRC parity data according to a descrambling sequence, computes CRC parity data from the received data, and compares the descrambled CRC parity data to the newly computed CRC parity data.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: June 11, 2019
    Assignee: BlackBerry Limited
    Inventors: Aaron Callard, Jianglei Ma
  • Patent number: 10257065
    Abstract: A method and apparatus for balancing multipoint Radio Access Network traffic to mitigate backhaul congestion is provided. Schedulers communicate with a Traffic Engineering (TE) controller either directly or via a Virtual Link Monitor. The schedulers receive indications of data rate upper limits for virtual links overlaid onto the backhaul network, and schedule mobile device communications such that the data rate upper limits are respected. The Virtual Link Monitors maintain indications of current loading of the virtual links and provide the schedulers with operational information based on same. Scheduling is performed in view of the operational information. The Virtual Link Monitors also provide the TE controller with indications of service requirements for the virtual links, so that the TE controller can reconfigure the virtual links based on same.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: April 9, 2019
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Philippe Leroux, Aaron Callard
  • Patent number: 10251046
    Abstract: It is possible to achieve fast high-frequency link discovery by communicating location parameters identifying a spatial location of a mobile device over a low-frequency interface to a low-frequency access point (AP). The location parameters are then used to identify antenna configuration parameters (e.g., precoders, etc.) for communicating discovery signals between the mobile device and a high-frequency access point. In one embodiment, the low-frequency AP relays the location parameters to the high-frequency AP, which uses the spatial location of the mobile device to perform link discovery. In another embodiment, the low-frequency AP communicates high-frequency antenna configuration parameters to the mobile device over the low-frequency interface.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: April 2, 2019
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Alex Stephenne, Aaron Callard
  • Patent number: 10230650
    Abstract: Dynamic point selection (DPS) can be implemented using access points having partial or no DPS synchronization. Specifically, a mobile device may broadcast a bounce back message to access points participating in DPS transmissions to signal that a data segment has been successfully received and/or decoded by the mobile device. The bounce back message may cause the access points to drop remaining packets corresponding to the data segment from their buffers without sending those remaining packets over their respective radio interfaces. The bounce back message may be broadcast over any wireless signaling channel, such as via radio link control (RLC) signaling. Moreover, different priorities may be assigned to encoded packets intended for DPS transmission based on whether the encoded packets are communicated over a primary or secondary backhaul path.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: March 12, 2019
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Aaron Callard, Philippe Leroux, Alex Stephenne
  • Patent number: 10083494
    Abstract: There is disclosed a system for transmitting data to users. The system includes nodes interconnected by at least one data network. The nodes are organized hierarchically to comprise a root node and at least two child nodes. The data transmission characteristics of communication with each of the child nodes are different. The root node is configured to: receive data transmission preferences of a particular user; receive data to be transmitted to the particular user; and transmit a selected subset of the data to at least one of the child nodes. The subset selected based on at least the received data transmission preferences and the data transmission characteristics, to permit the particular user to obtain data from the child nodes according to the data transmission preferences. The at least one of the child nodes being configured to: receive data from the root node; and transmit at least part of the received data to the user.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: September 25, 2018
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Nimal Gamini Senarath, Alex Stephenne, Philippe Leroux, Mehdi Arashmid Akhavain Mohammadi, Aaron Callard
  • Patent number: 10085132
    Abstract: An embodiment method for downlink machine type communications (MTC), includes receiving, at a base station, parameters including a geographic location related to a remote equipment (RE), receiving a predicate identifying the RE, determining a target zone in which the RE is located, determining a radio bearer associated with the target zone, and transmitting a data packet and the predicate by the base station on the radio bearer to a plurality of REs disposed in the target zone, the plurality of REs comprising at least the RE.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: September 25, 2018
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Xu Li, Aaron Callard, Hang Zhang
  • Patent number: 10020910
    Abstract: Systems, devices and methods for link level communication between a user equipment and plurality of network devices are described. A user equipment can include at least one processor configured to: after broadcasting a first data message to the plurality of base stations, receive one or more acknowledgements, corresponding to the first data message, from at least one of the plurality of base stations; and upon receipt of at least one acknowledgement, broadcast an indicator to the plurality of base stations, the indicator providing an indication of at least one of the at least one received acknowledgement.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: July 10, 2018
    Assignee: HUAWEI TECHNOLOGIES., LTD.
    Inventors: Philippe Leroux, Aaron Callard, Nimal Gamini Senarath, Alex Stephenne
  • Publication number: 20180176338
    Abstract: Embodiments are provided for header compression with online network codes. A header formulation is used in accordance with the network codes to reduce the header overhead. An agent node between a source of packets and a user equipment (UE) adds to a header in the packets block labels corresponding to blocks of data in the packets. The agent node further adds, to a payload portion of the packets, start and end times for transmitting the blocks. The blocks of data are encoded using an online network coding scheme and the packets are sent to an access node serving the UE, The access node receives the packets, compresses the header by compressing bits of the block labels based on a pre-defined finite number of paths between the agent node and a plurality of access nodes components serving the UE, and sends the compressed header in the packets to the UE.
    Type: Application
    Filed: February 7, 2018
    Publication date: June 21, 2018
    Inventor: Aaron Callard
  • Patent number: 9998355
    Abstract: It is possible to improve backhaul resource utilization efficiency during dynamic point selection (DPS) transmissions by unicasting different portions of a traffic flow to different access points participating in the DPS transmission. Specifically, a traffic flow may be encoded to obtain forward error correction (FEC) packets, and different subsets of the FEC packets may be unicast to different access points participating in the DPS transmission. The subsets of FEC packets may have partial (or no) redundancy such that the amount of duplicative data communicated over the backhaul network is reduced when compared to multicasting the entire traffic flow to each access point participating in the DPS transmission. There may be different degrees of redundancy between subsets of FEC packets to achieve different traffic engineering (TE) objectives.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: June 12, 2018
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Aaron Callard
  • Patent number: 9998338
    Abstract: A method for effective flow rate estimation for a plurality of video flows includes determining a first flow rate of each of the plurality of video flows in a first transmission window and receiving quality of experience (QoE) feedback for playing portions of the plurality of video flows in the first transmission window. The QoE feedback is received from a plurality of user equipments (UEs) receiving the plurality of video flows. A dynamic effective flow rate is estimated for each flow in the plurality of video flows in a second transmission window in accordance with at least the first flow rates of the plurality of video flows and the QoE feedback.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: June 12, 2018
    Assignee: Huawei Technologies Co., LTD
    Inventors: Ngoc-Dung Dao, Aaron Callard
  • Patent number: 9930145
    Abstract: Embodiments are provided for header compression with online network codes. A header formulation is used in accordance with the network codes to reduce the header overhead. An agent node between a source of packets and a user equipment (UE) adds to a header in the packets block labels corresponding to blocks of data in the packets. The agent node further adds, to a payload portion of the packets, start and end times for transmitting the blocks. The blocks of data are encoded using an online network coding scheme and the packets are sent to an access node serving the UE. The access node receives the packets, compresses the header by compressing bits of the block labels based on a pre-defined finite number of paths between the agent node and a plurality of access nodes components serving the UE, and sends the compressed header in the packets to the UE.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: March 27, 2018
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Aaron Callard
  • Patent number: 9930135
    Abstract: There are disclosed systems, devices, and methods for distributing pre-fetch data. A parent node obtains pre-fetch data comprising at least one of: i) data expected to be of interest to a particular user, pre-fetched by the parent node from at least one data source; and (ii) at least one identifier identifying data expected to be of interest to the particular user, for pre-fetching the identified data at a child node. The parent node selects first and second subsets of the pre-fetch data for transmission, respectively, to first and second child nodes, the selecting based on at least a predicted future location of the particular user and a respective geographic location of the first and second child nodes; and transmits the first and second subsets of the pre-fetch data, respectively, to the first and second child nodes.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: March 27, 2018
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Nimal Gamini Senarath, Philippe Leroux, Alex Stephenne, Mehdi Arashmid Akhavain Mohammadi, Aaron Callard
  • Patent number: 9923665
    Abstract: A method includes receiving, by a first device from a second device, a plurality of encoded messages on a plurality of transmission time intervals (TTIs), where the plurality of encoded messages are forward error correction (FEC) encoded, and where the FEC spans the plurality of encoded messages and decoding the plurality of encoded messages using FEC. The method also includes determining a plurality of decoding status messages in accordance with decoding the plurality of encoded messages and transmitting, by the first device to the second device, the plurality of decoding status messages less often than once every TTI.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: March 20, 2018
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Aaron Callard, Alex Stephenne, Mohammadhadi Baligh, Kelvin Kar Kin Au
  • Patent number: 9906985
    Abstract: Methods, devices and systems are provided for incorporating a consideration of the quality of service (QoS) of different end-to-end paths in a network, or portions thereof, into the scheduling of uplink data and the selection of data by a user device for transmission to one or more target reception points in a network. The target reception points may be determined from a number of possible reception points by a scheduling entity or by a network access node, gateway or other entity in the network and provided to a user device along with one or more indications of QoS for an uplink scheduling grant.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: February 27, 2018
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Alex Stephenne, Philippe Leroux, Aaron Callard, Nimal Gamini Senarath
  • Publication number: 20180035266
    Abstract: Systems and methods are disclosed herein for an enhanced Multimedia Broadcast Multicast Service (MBMS) in a wireless communications network. In one embodiment, a number of base stations in a MBMS zone, or broadcast region, accommodate both Spatial Multiplexing (SM) enabled user elements and non-SM enabled user elements. In another embodiment, a number of base stations form a MBMS zone, or broadcast region, where the MBMS zone is sub-divided into an SM zone and a non-SM zone. In another embodiment, the wireless communications network includes multiple MBMS zones. For each MBMS zone, base stations serving the MBMS zone transmit an MBMS zone identifier (ID) for the MBMS zone. The MBMS zone ID may be used by a user element for decoding and/or to determine when to perform a handoff from one MBMS zone to another.
    Type: Application
    Filed: October 11, 2017
    Publication date: February 1, 2018
    Inventors: Jianglei Ma, Aaron Callard, Ming Jia, Wen Tong, Peiying Zhu, Hang Zhang
  • Patent number: 9826504
    Abstract: Data is scrambled at a transmitter according to one of a number of predetermined scrambling sequences which are associated with a particular one of a number of predetermined transmit antenna diversity schemes (i.e., a specific number of transmit antenna ports). Received data is decoded using one or more of the known transmit antenna diversity schemes and the scrambled data is descrambled according to a corresponding descrambling sequence (related to the scrambling sequence). Based on the descrambled data, the receiver determines which transmit antenna diversity scheme (i.e., the number of antenna ports) is used by the transmitter. In one specific embodiment, CRC parity data is scrambled in the transmitter and the receiver descrambles the recovered CRC parity data according to a descrambling sequence, computes CRC parity data from the received data, and compares the descrambled CRC parity data to the newly computed CRC parity data.
    Type: Grant
    Filed: August 4, 2015
    Date of Patent: November 21, 2017
    Assignee: BlackBerry Limited
    Inventors: Aaron Callard, Jianglei Ma
  • Patent number: 9819463
    Abstract: A method and apparatus for facilitating communication through a wireless communication system configured for transmission of general-purpose data, are provided. A transparent radio bearer is instantiated in a device and is configured to interface with an application of the device. A transparent logical channel is also instantiated in the device and is configured to interface with a medium access layer of the device. The medium access layer forms a part of a chain of protocol layers operatively configured to facilitate communications to another device associated with the wireless communication system. The transparent radio bearer maps onto the transparent logical channel in order to bypass at least one sub-layer of the chain of protocol layers while conveying data between the application and the medium access layer of the device.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: November 14, 2017
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: William Anthony Gage, Aaron Callard
  • Patent number: 9811915
    Abstract: Visual information from camera sensors can be used to assign scheduling and/or transmission parameters in a wireless network. For example, the visual information can be used to visually discover a user equipment (UE) prior to initiating link discovery. This may be accomplished by analyzing the visual information to identify an absolute or relative position of the UE. The positioned may then be used to select antenna configuration parameters for transmitting a discovery signal, e.g., direction of departure (DoD), angle of departure (AoD), precoder. As another example, the visual information is used to predict a link obstruction over a radio interface between a UE and an AP. In yet other examples, the visual information may be used for traffic engineering purposes, such as to predict a traffic density or pair UEs with APs.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: November 7, 2017
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Alex Stephenne, Aaron Callard