Patents by Inventor Aaron Daniel Franklin

Aaron Daniel Franklin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230341296
    Abstract: An external tire reader can be configured to read a tire tread. The external tire reader can include an offset structure, a camera system, and a controller. The offset structure can be configured to be applied to the tire tread. The camera system can be configured to generate an image of the tire tread while the offset structure is applied to the tire tread. The offset structure can be configured to provide a fixed distance between the camera system and the tire tread while the offset structure is applied to the tire tread. The controller can be coupled with the camera system. The controller can be configured to process the image of the tire received from the camera system.
    Type: Application
    Filed: March 1, 2021
    Publication date: October 26, 2023
    Inventors: Michael STANGLER, Shady Tarek EL BASSIOUNY, Steven NOYCE, Aaron Daniel FRANKLIN, David Alan KOESTER, Carl Ray Prevatte, JR.
  • Publication number: 20230106441
    Abstract: A system for measuring a tread of a tire can include a nonmagnetic layer, a frame, and a housing. The nonmagnetic layer can provide a drive-over surface adapted to receive the tire thereon including the tread to be measured. The frame can have a magnet and a magnetic sensor coupled thereto. The housing can include a cavity therein. The frame with the magnet and the magnetic sensor can be mounted in the cavity. The nonmagnetic layer can be provided on the housing and on the frame.
    Type: Application
    Filed: February 22, 2021
    Publication date: April 6, 2023
    Inventors: Michael STANGLER, Shady Tarek EL BASSIOUNY, Steven NOYCE, Aaron Daniel FRANKLIN, David Alan KOESTER, Stephen W. BROOKS
  • Patent number: 11614317
    Abstract: Methods of measuring a thickness of a material are disclosed. An oscillating signal at a measurement frequency is applied to a circuit including an inductive component and a capacitive component provided using a pair of capacitive sensor electrodes adjacent the material. The measurement frequency is less than a resonant frequency of the circuit, and the resonant frequency is based on the inductive component and the capacitive component. Information regarding a value of a measured parameter is generated based on applying the oscillating signal at the measurement frequency to the circuit. A value of the measured parameter is related to the thickness of the material.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: March 28, 2023
    Assignees: Tyrata, Inc., Duke University
    Inventors: Steven Cummer, Joseph Batton Andrews, Aaron Daniel Franklin, David Alan Koester, James Barton Summers, III
  • Publication number: 20220163316
    Abstract: According to some embodiments disclosed herein, a system is provided to measure a tread of a tire. The system includes a nonmagnetic layer providing a drive over surface, a magnet, and a magnetic sensor associated with the magnet. The drive over surface is adapted to receive the tire thereon including the tread to be measured. The magnet has opposing first and second magnetic poles, the nonmagnetic layer is between the drive over surface and the magnet, and the magnet is arranged so that the first magnetic pole is between the second magnetic pole and the nonmagnetic layer. The nonmagnetic layer is between the drive over surface and the magnetic sensor, and the magnetic sensor is configured to detect a magnetic field resulting from the magnet and the tire on the drive over surface.
    Type: Application
    Filed: October 7, 2020
    Publication date: May 26, 2022
    Inventors: Daniel STEVENSON, Steven NOYCE, Maria Luisa SARTORELLI, Jesko VON WINDHEIM, Michael STANGLER, Glen METHENY, Stephen W. BROOKS, David Alan KOESTER, Aaron Daniel FRANKLIN
  • Publication number: 20200400420
    Abstract: Methods of measuring a thickness of a material are disclosed. An oscillating signal at a measurement frequency is applied to a circuit including an inductive component and a capacitive component provided using a pair of capacitive sensor electrodes adjacent the material. The measurement frequency is less than a resonant frequency of the circuit, and the resonant frequency is based on the inductive component and the capacitive component. Information regarding a value of a measured parameter is generated based on applying the oscillating signal at the measurement frequency to the circuit. A value of the measured parameter is related to the thickness of the material.
    Type: Application
    Filed: June 19, 2020
    Publication date: December 24, 2020
    Inventors: Steven CUMMER, Joseph Batton ANDREWS, Aaron Daniel FRANKLIN, David Alan KOESTER, James Barton SUMMERS, III
  • Patent number: 9466686
    Abstract: An electronic device comprises an insulator, a local first gate embedded in the insulator with a top surface of the first gate being substantially coplanar with a surface of the insulator, a first dielectric layer formed over the first gate and insulator, and a channel. The channel comprises a bilayer graphene layer formed on the first dielectric layer. The first dielectric layer provides a substantially flat surface on which the channel is formed. A second dielectric layer formed over the bilayer graphene layer and a local second gate formed over the second dielectric layer. Each of the local first and second gates is capacitively coupled to the channel of the bilayer graphene layer. The local first and second gates form a first pair of gates to locally control a first portion of the bilayer graphene layer.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: October 11, 2016
    Assignee: International Business Machines Corporation
    Inventors: Zhihong Chen, Aaron Daniel Franklin, Shu-Jen Han
  • Patent number: 9306028
    Abstract: An electronic device comprises an insulator, a local first gate embedded in the insulator with a top surface of the first gate being substantially coplanar with a surface of the insulator, a first dielectric layer formed over the first gate and insulator, and a channel. The channel comprises a bilayer graphene layer formed on the first dielectric layer. The first dielectric layer provides a substantially flat surface on which the channel is formed. A second dielectric layer formed over the bilayer graphene layer and a local second gate formed over the second dielectric layer. Each of the local first and second gates is capacitively coupled to the channel of the bilayer graphene layer. The local first and second gates form a first pair of gates to locally control a first portion of the bilayer graphene layer.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: April 5, 2016
    Assignee: International Business Machines Corporation
    Inventors: Zhihong Chen, Aaron Daniel Franklin, Shu-Jen Han
  • Publication number: 20150325672
    Abstract: An electronic device comprises an insulator, a local first gate embedded in the insulator with a top surface of the first gate being substantially coplanar with a surface of the insulator, a first dielectric layer formed over the first gate and insulator, and a channel. The channel comprises a bilayer graphene layer formed on the first dielectric layer. The first dielectric layer provides a substantially flat surface on which the channel is formed. A second dielectric layer formed over the bilayer graphene layer and a local second gate formed over the second dielectric layer. Each of the local first and second gates is capacitively coupled to the channel of the bilayer graphene layer. The local first and second gates form a first pair of gates to locally control a first portion of the bilayer graphene layer.
    Type: Application
    Filed: March 18, 2015
    Publication date: November 12, 2015
    Inventors: Zhihong Chen, Aaron Daniel Franklin, Shu-Jen Han
  • Patent number: 9082856
    Abstract: An electronic device comprises an insulator, a local first gate embedded in the insulator with a top surface of the first gate being substantially coplanar with a surface of the insulator, a first dielectric layer formed over the first gate and insulator, and a channel. The channel comprises a bilayer graphene layer formed on the first dielectric layer. The first dielectric layer provides a substantially flat surface on which the channel is formed. A second dielectric layer formed over the bilayer graphene layer and a local second gate formed over the second dielectric layer. Each of the local first and second gates is capacitively coupled to the channel of the bilayer graphene layer. The local first and second gates form a first pair of gates to locally control a first portion of the bilayer graphene layer.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: July 14, 2015
    Assignee: International Business Machines Corporation
    Inventors: Zhihong Chen, Aaron Daniel Franklin, Shu-Jen Han
  • Publication number: 20150194536
    Abstract: An electronic device comprises an insulator, a local first gate embedded in the insulator with a top surface of the first gate being substantially coplanar with a surface of the insulator, a first dielectric layer formed over the first gate and insulator, and a channel. The channel comprises a bilayer graphene layer formed on the first dielectric layer. The first dielectric layer provides a substantially flat surface on which the channel is formed. A second dielectric layer formed over the bilayer graphene layer and a local second gate formed over the second dielectric layer. Each of the local first and second gates is capacitively coupled to the channel of the bilayer graphene layer. The local first and second gates form a first pair of gates to locally control a first portion of the bilayer graphene layer.
    Type: Application
    Filed: March 18, 2015
    Publication date: July 9, 2015
    Inventors: Zhihong Chen, Aaron Daniel Franklin, Shu-Jen Han
  • Patent number: 9076873
    Abstract: An electronic device comprises an insulator, a local first gate embedded in the insulator with a top surface of the first gate being substantially coplanar with a surface of the insulator, a first dielectric layer formed over the first gate and insulator, and a channel. The channel comprises a bilayer graphene layer formed on the first dielectric layer. The first dielectric layer provides a substantially flat surface on which the channel is formed. A second dielectric layer formed over the bilayer graphene layer and a local second gate formed over the second dielectric layer. Each of the local first and second gates is capacitively coupled to the channel of the bilayer graphene layer. The local first and second gates form a first pair of gates to locally control a first portion of the bilayer graphene layer.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: July 7, 2015
    Assignee: International Business Machines Corporation
    Inventors: Zhihong Chen, Aaron Daniel Franklin, Shu-Jen Han
  • Patent number: 9064842
    Abstract: A semiconductor device includes a substrate, first plural contacts formed in the substrate, a graphene layer formed on the substrate and on the first plural contacts and second plural contacts formed on the graphene layer such that the graphene layer is formed between the first plural contacts and the second plural contacts.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: June 23, 2015
    Assignee: International Business Machines Corporation
    Inventors: Ageeth Anke Bol, Aaron Daniel Franklin, Shu-Jen Han
  • Patent number: 8890116
    Abstract: Transistor devices having vertically stacked carbon nanotube channels and techniques for the fabrication thereof are provided. In one aspect, a transistor device is provided. The transistor device includes a substrate; a bottom gate embedded in the substrate with a top surface of the bottom gate being substantially coplanar with a surface of the substrate; a stack of device layers on the substrate over the bottom gate, wherein each of the device layers in the stack includes a first dielectric, a carbon nanotube channel on the first dielectric, a second dielectric on the carbon nanotube channel and a top gate on the second dielectric; and source and drain contacts that interconnect the carbon nanotube channels in parallel. A method of fabricating a transistor device is also provided.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: November 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Zhihong Chen, Aaron Daniel Franklin, Shu-Jen Han
  • Patent number: 8785911
    Abstract: Transistor devices having nanoscale material-based channels (e.g., carbon nanotube or graphene channels) and techniques for the fabrication thereof are provided. In one aspect, a transistor device is provided. The transistor device includes a substrate; an insulator on the substrate; a local bottom gate embedded in the insulator, wherein a top surface of the gate is substantially coplanar with a surface of the insulator; a local gate dielectric on the bottom gate; a carbon-based nanostructure material over at least a portion of the local gate dielectric, wherein a portion of the carbon-based nanostructure material serves as a channel of the device; and conductive source and drain contacts to one or more portions of the carbon-based nanostructure material on opposing sides of the channel that serve as source and drain regions of the device.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: July 22, 2014
    Assignee: International Business Machines Corporation
    Inventors: Zhihong Chen, Aaron Daniel Franklin, Shu-Jen Han, James Bowler Hannon, Katherine L. Saenger, George Stojan Tulevski
  • Publication number: 20130248823
    Abstract: A semiconductor device includes a substrate, first plural contacts formed in the substrate, a graphene layer formed on the substrate and on the first plural contacts and second plural contacts formed on the graphene layer such that the graphene layer is formed between the first plural contacts and the second plural contacts.
    Type: Application
    Filed: March 20, 2012
    Publication date: September 26, 2013
    Applicant: International Business Machines Corporation
    Inventors: Ageeth Anke Bol, Aaron Daniel Franklin, Shu-Jen Han
  • Publication number: 20130015428
    Abstract: Transistor devices having vertically stacked carbon nanotube channels and techniques for the fabrication thereof are provided. In one aspect, a transistor device is provided. The transistor device includes a substrate; a bottom gate embedded in the substrate with a top surface of the bottom gate being substantially coplanar with a surface of the substrate; a stack of device layers on the substrate over the bottom gate, wherein each of the device layers in the stack includes a first dielectric, a carbon nanotube channel on the first dielectric, a second dielectric on the carbon nanotube channel and a top gate on the second dielectric; and source and drain contacts that interconnect the carbon nanotube channels in parallel. A method of fabricating a transistor device is also provided.
    Type: Application
    Filed: September 11, 2012
    Publication date: January 17, 2013
    Applicant: International Business Machines Corporation
    Inventors: Zhihong Chen, Aaron Daniel Franklin, Shu-Jen Han
  • Publication number: 20130001519
    Abstract: An electronic device comprises an insulator, a local first gate embedded in the insulator with a top surface of the first gate being substantially coplanar with a surface of the insulator, a first dielectric layer formed over the first gate and insulator, and a channel. The channel comprises a bilayer graphene layer formed on the first dielectric layer. The first dielectric layer provides a substantially flat surface on which the channel is formed. A second dielectric layer formed over the bilayer graphene layer and a local second gate formed over the second dielectric layer. Each of the local first and second gates is capacitively coupled to the channel of the bilayer graphene layer. The local first and second gates form a first pair of gates to locally control a first portion of the bilayer graphene layer.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 3, 2013
    Applicant: International Business Machines Corporation
    Inventors: Zhihong Chen, Aaron Daniel Franklin, Shu-Jen Han
  • Publication number: 20120326126
    Abstract: Transistor devices having nanoscale material-based channels (e.g., carbon nanotube or graphene channels) and techniques for the fabrication thereof are provided. In one aspect, a transistor device is provided. The transistor device includes a substrate; an insulator on the substrate; a local bottom gate embedded in the insulator, wherein a top surface of the gate is substantially coplanar with a surface of the insulator; a local gate dielectric on the bottom gate; a carbon-based nanostructure material over at least a portion of the local gate dielectric, wherein a portion of the carbon-based nanostructure material serves as a channel of the device; and conductive source and drain contacts to one or more portions of the carbon-based nanostructure material on opposing sides of the channel that serve as source and drain regions of the device.
    Type: Application
    Filed: June 23, 2011
    Publication date: December 27, 2012
    Applicant: International Business Machines Corporation
    Inventors: Zhihong Chen, Aaron Daniel Franklin, Shu-Jen Han, James Bowler Hannon, Katherine L. Saenger, George Stojan Tulevski
  • Patent number: 8288759
    Abstract: Transistor devices having vertically stacked carbon nanotube channels and techniques for the fabrication thereof are provided. In one aspect, a transistor device is provided. The transistor device includes a substrate; a bottom gate embedded in the substrate with a top surface of the bottom gate being substantially coplanar with a surface of the substrate; a stack of device layers on the substrate over the bottom gate, wherein each of the device layers in the stack includes a first dielectric, a carbon nanotube channel on the first dielectric, a second dielectric on the carbon nanotube channel and a top gate on the second dielectric; and source and drain contacts that interconnect the carbon nanotube channels in parallel. A method of fabricating a transistor device is also provided.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: October 16, 2012
    Inventors: Zhihong Chen, Aaron Daniel Franklin, Shu-Jen Han
  • Publication number: 20120175594
    Abstract: An electronic device comprises an insulator, a local first gate embedded in the insulator with a top surface of the first gate being substantially coplanar with a surface of the insulator, a first dielectric layer formed over the first gate and insulator, and a channel. The channel comprises a bilayer graphene layer formed on the first dielectric layer. The first dielectric layer provides a substantially flat surface on which the channel is formed. A second dielectric layer formed over the bilayer graphene layer and a local second gate formed over the second dielectric layer. Each of the local first and second gates is capacitively coupled to the channel of the bilayer graphene layer. The local first and second gates form a first pair of gates to locally control a first portion of the bilayer graphene layer.
    Type: Application
    Filed: January 7, 2011
    Publication date: July 12, 2012
    Applicant: International Business Machines Corporation
    Inventors: Zhihong Chen, Aaron Daniel Franklin, Shu-Jen Han