Patents by Inventor Aaron Joseph Dulgar-Tulloch

Aaron Joseph Dulgar-Tulloch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9347033
    Abstract: A method of processing an adipose tissue to collect adipose derived regenerative cells is provided, wherein the method comprises providing a vessel comprising a fluid jet mixer, introducing the adipose tissue into the vessel, introducing a buffer solution into the vessel; washing the adipose tissue using the fluid jet mixer; introducing an enzyme solution into the vessel; initiating jet mixing into the vessel comprising the adipose tissue, the enzyme solution, and the buffer solution using the fluid jet mixer to digest the adipose tissue to form a digestion product; phase-separating the digestion product into a digested buoyant fat layer and a non-buoyant aqueous layer; and collecting the non-buoyant aqueous layer comprising the adipose derived regenerative cells. A system of processing an adipose tissue to collect adipose derived regenerative cells is also provided.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: May 24, 2016
    Assignee: General Electric Company
    Inventors: Zaeem Ashraf Khan, Aaron Joseph Dulgar-Tulloch, Stefan Rakuff, Philip Alexander Shoemaker, Erik Leeming Kvam, Xiaohui Chen, Jaydeep Roy
  • Publication number: 20150337263
    Abstract: A method of processing an adipose tissue to collect adipose derived regenerative cells is provided, wherein the method comprises providing a vessel comprising a fluid jet mixer, introducing the adipose tissue into the vessel, introducing a buffer solution into the vessel; washing the adipose tissue using the fluid jet mixer; introducing an enzyme solution into the vessel; initiating jet mixing into the vessel comprising the adipose tissue, the enzyme solution, and the buffer solution using the fluid jet mixer to digest the adipose tissue to form a digestion product; phase-separating the digestion product into a digested buoyant fat layer and a non-buoyant aqueous layer; and collecting the non-buoyant aqueous layer comprising the adipose derived regenerative cells. A system of processing an adipose tissue to collect adipose derived regenerative cells is also provided.
    Type: Application
    Filed: July 30, 2015
    Publication date: November 26, 2015
    Inventors: Zaeem Ashraf Khan, Aaron Joseph Dulgar-Tulloch, Stefan Rakuff, Philip Alexander Shoemaker, Erik Leeming Kvam, Xiaohui Chen, Jaydeep Roy
  • Patent number: 9109198
    Abstract: A method of processing an adipose tissue to collect adipose derived regenerative cells is provided, wherein the method comprises providing a vessel comprising a fluid jet mixer; introducing the adipose tissue into the vessel; introducing a buffer solution into the vessel; washing the adipose tissue using the fluid jet mixer; introducing an enzyme solution into the vessel; initiating jet mixing into the vessel comprising the adipose tissue, the enzyme solution, and the buffer solution using the fluid jet mixer to digest the adipose tissue to form a digestion product; phase-separating the digestion product into a digested buoyant fat layer and a non-buoyant aqueous layer; and collecting the non-buoyant aqueous layer comprising the adipose derived regenerative cells. A system of processing an adipose tissue to collect adipose derived regenerative cells is also provided.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: August 18, 2015
    Assignee: General Electric Company
    Inventors: Zaeem Ashraf Khan, Aaron Joseph Dulgar-Tulloch, Stefan Rakuff, Philip Alexander Shoemaker, Erik Leeming Kvam, Xiaohui Chen, Jaydeep Roy
  • Publication number: 20140057282
    Abstract: Methods and kits for binding and releasing biological targets, comprising, a binder having an environmentally reactive molecular switch that can switch between a high affinity state, to bind the target, to a low affinity state, to release the target. In one embodiment, the binder is a pre-existing chemical sequence, composition, or structural configuration but unknown or unspecified and still viable as a binder for attaching a molecular switch.
    Type: Application
    Filed: November 5, 2013
    Publication date: February 27, 2014
    Applicant: General Electric Company
    Inventors: Aaron Joseph Dulgar-Tulloch, Ernest William Kovacs, Evelina Roxana Loghin, Anup Sood
  • Publication number: 20120276628
    Abstract: A method of processing an adipose tissue to collect adipose derived regenerative cells is provided, wherein the method comprises providing a vessel comprising a fluid jet mixer; introducing the adipose tissue into the vessel; introducing a buffer solution into the vessel; washing the adipose tissue using the fluid jet mixer; introducing an enzyme solution into the vessel; initiating jet mixing into the vessel comprising the adipose tissue, the enzyme solution, and the buffer solution using the fluid jet mixer to digest the adipose tissue to form a digestion product; phase-separating the digestion product into a digested buoyant fat layer and a non-buoyant aqueous layer; and collecting the non-buoyant aqueous layer comprising the adipose derived regenerative cells. A system of processing an adipose tissue to collect adipose derived regenerative cells is also provided.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 1, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Zaeem Ashraf Khan, Aaron Joseph Dulgar-Tulloch, Stefan Rakuff, Philip Alexander Shoemaker, Erik Leeming Kvam, Xiaohui Chen, Jaydeep Roy
  • Publication number: 20120132593
    Abstract: A magnetic separator comprising a separation chamber is provided. The separation chamber comprises a having an inlet and at least one outlet opposite the inlet in a downstream direction, and a magnetic source operatively coupled to the separation chamber. The magnetic source comprises a plurality of magnets that can be selectively turned off and on to create a dynamic magnetic field in the separation chamber.
    Type: Application
    Filed: November 30, 2010
    Publication date: May 31, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sunil Srinivasa Murthy, James William Bray, Shankar Chandrasekaran, Arvind Kumar Tiwari, Aaron Joseph Dulgar-Tulloch, Munish Vishwas Inamdar
  • Publication number: 20120135494
    Abstract: A magnetic separator comprising a separation chamber is provided. The magnetic separator comprises an inlet and at least one outlet, and a magnetic source operatively coupled to the separation chamber and comprising a plurality of magnets that can be selectively turned off and on to create a dynamic magnetic field in the separation chamber.
    Type: Application
    Filed: November 30, 2010
    Publication date: May 31, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sunil Srinivasa Murthy, James William Bray, Shankar Chandrasekaran, Arvind Kumar Tiwari, Aaron Joseph Dulgar-Tulloch, Munish Vishwas Inamdar
  • Patent number: 8083069
    Abstract: The present application discloses a process for the high throughput separation of at least one distinct biological material from a sample using magnetic tags and a magnetic separation set up capable of processing at least about 106 units/second. A magnetic field gradient is used to deflect target material bearing a magnet tag from one laminar flow stream to another so that the magnetically tagged target material exits a separation chamber via a different outlet than the rest of the sample. The process is applicable to isolating several distinct biological materials by directing each via magnetic deflection to its own unique outlet. The application also discloses a system for performing the process and a kit that includes the system and the magnetic tags.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: December 27, 2011
    Assignee: General Electric Company
    Inventors: Sunil Srinivasa Murthy, Aaron Joseph Dulgar-Tulloch, James William Bray, Shankar Chandrasekaran, Arvind Kumar Tiwari
  • Publication number: 20110024331
    Abstract: The present application discloses a process for the high throughput separation of at least one distinct biological material from a sample using magnetic tags and a magnetic separation set up capable of processing at least about 106 units/second. A magnetic field gradient is used to deflect target material bearing a magnet tag from one laminar flow stream to another so that the magnetically tagged target material exits a separation chamber via a different outlet than the rest of the sample. The process is applicable to isolating several distinct biological materials by directing each via magnetic deflection to its own unique outlet. The application also discloses a system for performing the process and a kit that includes the system and the magnetic tags.
    Type: Application
    Filed: July 31, 2009
    Publication date: February 3, 2011
    Applicant: General Electric Company
    Inventors: Sunil Srinivasa Murthy, Aaron Joseph Dulgar-Tulloch, James William Bray, Shankar Chandrasekaran, Arvind Kumar Tiwari