Patents by Inventor Aaron Sayre

Aaron Sayre has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180328661
    Abstract: A method for removing a foulant from a heat exchanger is disclosed. A process fluid, comprising a process liquid and a fouling component, are provided to a process side of the heat exchanger. A flow of a coolant to the coolant side is provided by opening an inlet to the coolant side. The process fluid is cooled, a portion of the fouling component desublimating, crystallizing, freezing, condensing coupled with solidifying, or a combination thereof as a first portion of the foulant onto an outer surface of the coolant side. The inlet to the coolant side is periodically closed such that the flow of the coolant slows or stops, warming the process side, and causing the first portion of the foulant to sublimate, melt, absorb, or a combination thereof off the outer surface of the coolant side. The process then returns to the providing the flow of the coolant step.
    Type: Application
    Filed: May 11, 2017
    Publication date: November 15, 2018
    Inventors: Larry Baxter, Kyler Stitt, Eric Mansfield, Christopher Hoeger, Aaron Sayre, Nathan Davis
  • Publication number: 20180320963
    Abstract: A process for separating a vapor from a gas is disclosed. A cryogenic liquid is provided to an inlet of a froth flotation device. A carrier gas is provided to a gas distributor of the froth flotation device. The carrier gas comprises a product vapor. Bubbles of the carrier gas are produced and passed through the cryogenic liquid in the froth flotation device. A portion of the product vapor desublimates, condenses, crystallizes, or a combination thereof to produce a solid product and a product-depleted carrier gas. Bubbles of the product-depleted carrier gas collect the solid product as a froth concentrate. The froth concentrate is removed by overflowing out of the froth flotation device.
    Type: Application
    Filed: May 4, 2017
    Publication date: November 8, 2018
    Inventors: Larry Baxter, Stephanie Burt, Christopher Hoeger, David Frankman, Aaron Sayre, Eric Mansfield, Skyler Chamberlain, Kyler Stitt, Nathan Davis
  • Publication number: 20180306499
    Abstract: A method for removing a vapor from a carrier gas is disclosed. A heat exchanger is provided. A coolant is provided to the coolant side. A slurry is provided to the process side. The slurry comprises a contact liquid and scouring solids. The carrier gas is provided to the heat exchanger, the carrier gas comprising a vapor. A portion of the vapor desublimates, condenses, absorbs, or reacts such that the portion of the vapor solidifies to form a product solid. At least a portion of the product solid deposits as a foulant on an outer surface of the coolant side and is scoured with the scouring solids to remove the foulant from the outer surface of the coolant side. A vapor-depleted carrier gas is removed from the heat exchanger. The slurry and product solid from the heat exchanger. In this manner, the vapor is removed from the carrier gas.
    Type: Application
    Filed: April 21, 2017
    Publication date: October 25, 2018
    Inventors: Larry Baxter, Christopher Hoeger, Skyler Chamberlain, David Frankman, Aaron Sayre, Kyler Stitt, Eric Mansfield, Stephanie Burt, Nathan Davis
  • Publication number: 20180306496
    Abstract: A method for producing a purified product stream is disclosed. A process stream is provided to a screw compressor, the process stream comprising a contact liquid stream and a product stream, wherein the product stream comprises a solid portion. The process stream is passed through the screw compressor and into a melting device. The solid portion of the product stream is melted in the melting device to a temperature and a pressure such that a portion of the product stream vaporizes, forming a purified product stream, and vaporization of the contact liquid stream into the purified product stream is essentially prevented. A restricted outlet is provided to an upper portion of the vessel. The restricted outlet is proportionally controlled such that the pressure and the temperature is maintained as the purified product stream passes through the restricted outlet. In this manner, the purified product stream is produced.
    Type: Application
    Filed: April 21, 2017
    Publication date: October 25, 2018
    Inventors: Larry Baxter, Kyler Stitt, Aaron Sayre, Nathan Davis
  • Publication number: 20180306495
    Abstract: A process for forming a solid product or products is disclosed. The process is provided with n desublimating exchangers. An exchanger E1 being associated with a first exchanger and an exchanger En being associated with an nth exchanger, n representing the number of exchangers. The n exchangers comprise at least one direct-contact exchanger comprising a contact fluid. A process fluid is passed through the n exchangers in order from E1 through En. The process fluid comprises a product component or components. The solid product or products form from the product component or components in the plurality of exchangers by desublimation. The solid product or products are separated from the process fluid. In this manner, a solid product or products is formed.
    Type: Application
    Filed: April 24, 2017
    Publication date: October 25, 2018
    Inventors: Larry Baxter, Christopher Hoeger, Stephanie Burt, Kyler Stitt, Eric Mansfield, Aaron Sayre, David Frankman, Andrew Baxter, Nathan Davis
  • Publication number: 20180306382
    Abstract: A method for causing a phase change from a cryogenic solid to a cryogenic liquid is disclosed. A melting device, a vessel, and a solids pressurization device are provided. The solids pressurization device passes through at least a portion of the vessel. The cryogenic solid is provided to the vessel with a recycled portion of the cryogenic liquid. The cryogenic solid is conveyed and pressurized towards an outlet of the vessel to a pressure above the triple point by the solids pressurization device. The cryogenic solid is warmed by the melting device to a temperature above the solid-liquid phase transition curve, causing the cryogenic solids to change phase and become the cryogenic liquid.
    Type: Application
    Filed: April 19, 2017
    Publication date: October 25, 2018
    Inventors: Larry Baxter, Skyler Chamberlain, David Frankman, Aaron Sayre, Nathan Davis
  • Publication number: 20180306500
    Abstract: A method for preventing blockage of a cryogenic injection system is disclosed. The cryogenic injection system is provided comprising a gas feed line attached to a gas distributor. A gas is fed through the gas feed line and the gas distributor into a cryogenic liquid. A portion of the gas feed line passes through the cryogenic liquid. An insulative layer is provided for the portion of the gas feed line that passes through the cryogenic liquid. Heat transfer through the insulative layer between the portion of the gas feed line and the cryogenic liquid is countered sufficiently to prevent blockage of the gas feed line by a component or components of the gas. In this manner, blockage of the cryogenic injection system is prevented.
    Type: Application
    Filed: April 21, 2017
    Publication date: October 25, 2018
    Inventors: Larry Baxter, Kyler Stitt, Stephanie Burt, David Frankman, Aaron Sayre, Nathan Davis
  • Publication number: 20180299194
    Abstract: A method for preventing fouling of a demister is disclosed. A process fluid is provided into a vessel. A gas is provided to a gas inlet of the vessel. The gas comprises a component that desublimates, crystallizes, solidifies, reacts, or a combination thereof, in the process fluid, forming a first solid. The gas is passed through the process fluid, the component of the gas forming the first solid, resulting in a component-depleted gas. The component-depleted gas is passed out of the process fluid, causing splashing or spurting of the process fluid and the first solid. The diverter section is provided between the demister and the gas inlet, the diverter section comprising a physical obstruction preventing the process fluid and the first solid from splashing or spurting onto the demister. In this manner, fouling of the demister is prevented.
    Type: Application
    Filed: April 12, 2017
    Publication date: October 18, 2018
    Inventors: Larry Baxter, Andrew Baxter, Kyler Stitt, Aaron Sayre, Stephanie Burt, David Frankman, Nathan Davis
  • Publication number: 20180299200
    Abstract: A process to prevent fouling using a desublimating heat exchanger is disclosed. An outlet stream from the desublimating heat exchanger may be split into a plurality of parallel streams. The parallel streams may be sent through a plurality of discrete unit operations, and the unit operations may change the temperature of at least one of the parallel streams. Parallel streams of differing temperature may emerge from the unit operations. The parallel streams which are of a similar temperature may be mixed to form a warm stream and a cool stream. The warm stream and the cool stream may be sent to a mixing chamber. A mixed stream of substantially uniform temperature may emerge from the mixing chamber, and the mixed stream may be recycled back to the desublimating heat exchanger. The mixing chamber may be separate from the desublimating heat exchanger, or the parallel streams of differing temperature may be mixed in the desublimating heat exchanger.
    Type: Application
    Filed: April 17, 2017
    Publication date: October 18, 2018
    Inventors: Larry Baxter, Kyler Stitt, Aaron Sayre, Christopher Hoeger
  • Publication number: 20180299176
    Abstract: A process to prevent fouling using a desublimating heat exchanger is disclosed. An outlet stream from the desublimating heat exchanger may be split into a plurality of parallel streams. The parallel streams may be sent through other devices for performing a unit operation, and the devices for performing a unit operation may change the temperature of at least one of the parallel streams. Parallel streams of differing temperature may emerge from the devices for performing a unit operation. The parallel streams of differing temperature may be sent to a mixing chamber. A mixed stream of uniform temperature may emerge from the mixing chamber, and the mixed stream may be recycled back to the desublimating heat exchanger. The mixing chamber may be separate from the desublimating heat exchanger, or the parallel streams of differing temperature may be mixed in the desublimating heat exchanger.
    Type: Application
    Filed: April 12, 2017
    Publication date: October 18, 2018
    Inventors: Larry Baxter, Kyler Stitt, Aaron Sayre, Christopher Hoeger
  • Publication number: 20180283925
    Abstract: An apparatus and method for measuring the level of a liquid. The apparatus includes an elongated probe comprising an electrically and thermally conductive material. The probe has an upper region to be disposed above the surface of the liquid, a lower region to be disposed below the surface of the liquid, and a middle region. A heater adds heat to the probe, and temperature sensors may measure the temperature of the probe in the upper and lower regions. Electrical circuitry may be used to control and receive signals from the various components and to measure the electrical resistance between a location in the upper region of the probe and a location in the lower region of the probe. The liquid level may be computed as a function of the measured values, the probe dimensions, and the known temperature dependence of the electrical resistance of the probe.
    Type: Application
    Filed: March 29, 2017
    Publication date: October 4, 2018
    Inventors: Larry Baxter, David Frankman, Aaron Sayre
  • Publication number: 20180280840
    Abstract: A device and a method for thickening a slurry are disclosed. A pump is provided comprising an inner chamber, a pumping apparatus, an external wall, an inlet, and an outlet. The slurry comprises a solid and a liquid. The slurry enters the inner chamber through the inlet and is pumped and pressurized by the pumping apparatus through the inner chamber across a portion of the external wall comprising a porous wall, causing a portion of the liquid to be pressed through the porous wall as a liquid product stream and thickening the slurry into a thickened slurry stream. The thickened slurry stream leaves through the slurry outlet.
    Type: Application
    Filed: March 29, 2017
    Publication date: October 4, 2018
    Inventors: Larry Baxter, David Frankman, Aaron Sayre, Nathan Davis
  • Publication number: 20180283781
    Abstract: A method for removal of a foulant from a carrier gas is disclosed. A solids conveyance device that spans a vessel is provided, comprising an enclosed section and a filtering section. A cryogenic liquid and the carrier gas are provided to the enclosed section. The foulant condenses, dissolves, or desublimates into the cryogenic liquid, forming a cryogenic slurry and a foulant-depleted carrier gas entrained in the cryogenic slurry. The solids conveyance device advances the cryogenic slurry into the filtering section. The foulant-depleted carrier gas leaves the vessel through an upper portion of the permeable exterior wall and a warmed cryogenic liquid is removed from the cryogenic slurry through a lower portion of the permeable exterior wall, resulting in a solid foulant that is passed out of the solids outlet. In this manner, the foulant is removed from the carrier gas.
    Type: Application
    Filed: March 29, 2017
    Publication date: October 4, 2018
    Inventors: Larry Baxter, Kyler Stitt, Christopher Hoeger, Aaron Sayre, Eric Mansfield, Nathan Davis
  • Publication number: 20180283780
    Abstract: A method for removal of a foulant from a carrier gas is disclosed. A solids conveyance device that spans a vessel and a solids coolant system are provided. A cold solid foulant is provided to the solid inlet of the vessel. The carrier gas containing the foulant is provided to the carrier gas inlet of the vessel. The foulant condenses or desublimates onto the recycled solid foulant, forming a foulant-depleted carrier gas and a solid foulant product. The solids conveyance device passes the solid foulant product out of the vessel. The foulant-depleted carrier gas leaves the vessel. The solid foulant product is split into a final solid foulant product and a recycled solid foulant. The recycled solid foulant is cooled through the coolant system to produce the cold solid foulant. In this manner, the foulant is removed from the carrier gas.
    Type: Application
    Filed: March 29, 2017
    Publication date: October 4, 2018
    Inventors: Larry Baxter, Kyler Stitt, Christopher Hoeger, Aaron Sayre, Eric Mansfield, Nathan Davis
  • Publication number: 20180238619
    Abstract: A method for separating a vapor from a carrier gas is disclosed. A hydrocyclone is provided with one or more nozzles on the wall of the hydrocyclone. A cryogenic liquid is provided to the tangential feed inlet at a velocity that induces a tangential flow and a cyclone vortex in the hydrocyclone. The carrier gas is injected into the hydrocyclone through the one or more nozzles. The vapor dissolves, condenses, desublimates, or a combination thereof, forming a vapor-depleted carrier gas and a vapor-enriched cryogenic liquid. The vapor-depleted gas is drawn through the vortex finder while the vapor-enriched cryogenic liquid is drawn through the apex nozzle outlet. In this manner, the vapor is removed from the carrier gas.
    Type: Application
    Filed: February 22, 2017
    Publication date: August 23, 2018
    Inventors: Larry Baxter, Christopher Hoeger, Aaron Sayre, Skyler Chamberlain, Kyler Stitt, Eric Mansfield, Jacom Chamberlain, Stephanie Burt, Andrew Baxter, Nathan Davis
  • Publication number: 20180238646
    Abstract: A method for removing a surface foulant is disclosed. An operating heat exchanger is provided. A carrier liquid that contains potential fouling agents is provided to the heat exchanger. The potential fouling agents foul at least a portion of the heat exchanger. The exchanger is operated such that the carrier liquid is at a vapor pressure equal to the operating pressure. Cavitation inducing devices are provided to the exchanger. A condition indicating fouling is detected. The cavitation inducing devices are operated on a portion of the exchanger to cause a localized pressure change, vaporizing a portion of the carrier liquid and forming a transient bubble or bubbles which collapse by cavitation, producing a localized shockwave, a re-entrant microjet, and extreme transient pressures and temperatures. These steps are repeated as necessary to remove the surface foulant. In this manner, the surface foulant is removed from the operating heat exchanger.
    Type: Application
    Filed: February 23, 2017
    Publication date: August 23, 2018
    Inventors: Larry Baxter, David Frankman, Aaron Sayre, Nathan Davis
  • Publication number: 20180238620
    Abstract: An air-sparged hydrocyclone for separating a vapor from a carrier gas is disclosed. The cyclone comprises a porous sparger covered by an outer gas plenum. A cryogenic liquid is injected to a tangential feed inlet at a velocity that induces a tangential flow and a cyclone vortex in the air-sparged hydrocyclone. The carrier gas is injected into the cyclone through the porous sparger. The vapor dissolves, condenses, desublimates, or a combination thereof, forming a vapor-depleted carrier gas and a vapor-enriched cryogenic liquid. The vapor-depleted carrier gas is drawn through a vortex finder and the vapor-enriched cryogenic liquid is drawn through an apex nozzle outlet. In this manner, the vapor is removed from the carrier gas.
    Type: Application
    Filed: February 22, 2017
    Publication date: August 23, 2018
    Inventors: Larry Baxter, Christopher Hoeger, Aaron Sayre, Skyler Chamberlain, Kyler Stitt, Eric Mansfield, Stephanie Burt, Jacom Chamberlain, Andrew Baxter, Nathan Davis
  • Publication number: 20180236397
    Abstract: A hydrocyclone for separating a vapor from a carrier gas is disclosed. The hydrocyclone comprises one or more nozzles. A cryogenic liquid is injected to a tangential feed inlet at a velocity that induces a tangential flow and a cyclone vortex in the hydrocyclone. The carrier gas is injected into the cryogenic liquid, causing the vapor to dissolve, condense, desublimate, or a combination thereof, forming a vapor-depleted carrier gas and a vapor-enriched cryogenic liquid. The vapor-depleted carrier gas is drawn through a vortex finder and the vapor-enriched cryogenic liquid is drawn through an apex nozzle outlet. In this manner, the vapor is removed from the carrier gas.
    Type: Application
    Filed: February 22, 2017
    Publication date: August 23, 2018
    Inventors: Larry Baxter, Christopher Hoeger, Aaron Sayre, Skyler Chamberlain, Kyler Stitt, Eric Mansfield, Stephanie Burt, Andrew Baxter, Jacom Chamberlain, Nathan Davis
  • Publication number: 20180236460
    Abstract: A method for separating a vapor from a carrier gas is disclosed. An air-sparged hydrocyclone is provided with a porous sparger covered by an outer gas plenum. A cryogenic liquid is provided to the tangential feed inlet at a velocity that induces a tangential flow and a cyclone vortex in the cyclone. The carrier gas is injected into the air-sparged hydrocyclone through the porous sparger. The vapor dissolves, condenses, desublimates, or a combination thereof, forming a vapor-depleted carrier gas and a vapor-enriched cryogenic liquid. The vapor-depleted gas is drawn through a vortex finder while the vapor-enriched cryogenic liquid is drawn through an apex nozzle outlet. In this manner, the vapor is removed from the carrier gas.
    Type: Application
    Filed: February 21, 2017
    Publication date: August 23, 2018
    Inventors: Larry Baxter, Christopher Hoeger, Aaron Sayre, Skyler Chamberlain, Kyler Stitt, Stephanie Burt, Eric Mansfield, Jacom Chamberlain, Andrew Baxter, Nathan Davis
  • Patent number: 10047863
    Abstract: A device is disclosed comprising a diaphragm mechanism. A diaphragm mechanism comprises an enclosure defined by opposing flexible walls joined along a perimeter of the enclosure and one or more coiled springs contained entirely between the opposed flexible walls. A central, helical axis of the one or more coiled springs is disposed substantially parallel to the opposed flexible walls and arrayed in concentric spirals around a central hole or arrayed in parallel bands.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: August 14, 2018
    Inventors: Larry Baxter, Nathan Davis, Aaron Sayre, David Frankman, Kyler Stitt, Skyler Chamberlain