Patents by Inventor Abbas Komijani

Abbas Komijani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11978578
    Abstract: Radio frequency filtering circuitry blocks certain frequencies in an outgoing signal so that the signal may be transmitted over a desired frequency. The radio frequency filtering circuitry includes a first inductor having a first coil and a second inductor coupled to and disposed within the first coil. The second inductor has a second coil and a third coil symmetrical to the second coil. When current is applied to the radio frequency filtering circuitry, the current in the second coil causes a first induced current in the first coil and the current in the third coil causes a second induced current in the first coil, wherein the second induced current is approximately equal in magnitude and opposite in direction to the first induced current. As such, the second induced current may compensate for the first induced current.
    Type: Grant
    Filed: August 31, 2022
    Date of Patent: May 7, 2024
    Assignee: Apple Inc.
    Inventors: Hongrui Wang, Saihua Lin, Abbas Komijani, Sohrab Emami-Neyestanak
  • Publication number: 20240137068
    Abstract: A transceiver having a shared filter for both transmit and receive modes is disclosed. A transceiver includes a transmitter having an output coupled to a signal node, wherein the transmitter is configured to transmit signals onto the signal node during transceiver operation in a transmit mode. The transceiver also includes a receiver having an input coupled to the signal node, and configured to receive signals from the signal node during operation in the receive mode. The transceiver further includes a first filter coupled to the signal node, wherein the filter is shared by the transmitter and the receiver. The filter is coupled between the transceiver and a first terminal of a transmission line.
    Type: Application
    Filed: October 23, 2023
    Publication date: April 25, 2024
    Inventors: Yashar Rajavi, Sohrab Emami-Neyestanak, Abbas Komijani
  • Patent number: 11955979
    Abstract: An electronic device may include wireless circuitry having mixer circuitry configured to receive oscillator signals from a partial-fractional phase-locked loop (PLL). The partial-fractional PLL may include a phase frequency detector, a charge pump, a loop filter, and a frequency divider connected in a loop. To implement the partial-fractional capability of the PLL, the frequency divider may receive a bitstream from a first order sigma delta modulator and a finite impulse response filter. The first order sigma delta modulator may output a periodic non-randomized output. The finite impulse response filter may increase the frequency of toggling of the periodic non-randomized output. Configured and operated in this way, the partial-fractional PLL can exhibit reduced phase noise.
    Type: Grant
    Filed: June 8, 2022
    Date of Patent: April 9, 2024
    Inventors: Reetika K Agarwal, Abbas Komijani, Hongrui Wang
  • Patent number: 11955796
    Abstract: An output circuit included in an integrated circuit may employ multiple protection circuits to protect driver devices from damage during an electrostatic discharge event. One protection circuit clamps a signal port to a ground supply node upon detection of the electrostatic discharge event. Another protection circuit increases the voltage level of a control terminal to one of the driver devices during the electrostatic discharge event to reduce the voltage across the driver device and prevent damage to the device.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: April 9, 2024
    Assignee: Apple Inc.
    Inventors: Junjun Li, Abbas Komijani, Hongrui Wang
  • Publication number: 20240106440
    Abstract: To increase the operating frequency range of the DLL while decreasing varactor sizes, coarse tuning circuitry may be implemented in a delay-locked loop (DLL). The DLL may include a voltage-controlled delay line (VCDL) including multiple switched capacitors coupled in parallel to each other. An electrical ground may be coupled to the parallel switched capacitors at a first node and a buffer and variable capacitor may be coupled to the parallel switched capacitors at a second node. The coarse tuning circuitry may be electrically coupled to a phase detector and to the multiple switched capacitors of the VCDL, such that the coarse tuning circuitry may receive a signal (e.g., an indication of a phase) from the phase detector and may adjust switched capacitor loading based on the signal received from the phase detector. Such a DLL implementation may increase DLL tuning range and decrease phase noise, among other advantages.
    Type: Application
    Filed: December 12, 2022
    Publication date: March 28, 2024
    Inventors: Chen Zhai, Abbas Komijani
  • Patent number: 11909355
    Abstract: To prevent an undesired operating mode of voltage-controlled oscillation (VCO) circuitry from dominating a desired operating mode (e.g., an in-phase operating mode or an out-of-phase operating mode), a supply reset and ramp pulse may be provided to the VCO circuitry when switching to a new mode, such that supply voltage to the VCO circuitry is reset (e.g., set to 0 V or another reference voltage), and gradually increased or ramped up back to a steady-state voltage (e.g., used to maintain a mode) within a time duration. Additionally or alternatively, a switch control bootstrap pulse may be provided to the VCO circuitry that is bootstrapped to (e.g., applied instantaneously or concurrently with) switching the VCO circuitry to the new mode. After a time duration, the VCO circuitry may switch back to a steady-state voltage (e.g., used to maintain the new mode).
    Type: Grant
    Filed: September 12, 2022
    Date of Patent: February 20, 2024
    Assignee: Apple Inc.
    Inventors: Hongrui Wang, Abbas Komijani
  • Patent number: 11906998
    Abstract: Embodiments disclosed herein relate to a low-voltage dropout regulator and more specifically to improving a power supply rejection ratio (PSRR) of the low dropout voltage regulator. The low dropout voltage regulator may be used to generate various voltages for integrated circuits of an electronic device. In some cases, a P-type metal-oxide-semiconductor (PMOS) low dropout (LDO) voltage regulator may be used. However, the PMOS LDO may not provide a sufficient PSRR or reduction in supply noise. To address these issues, an N-type metal-oxide-semiconductor (NMOS) LDO voltage regulator having an NMOS pass transistor may be used. The NMOS LDO may provide a lower impedance than the PMOS LDO. Further, the NMOS LDO may provide an increased bandwidth and consume a smaller physical area than the PMOS LDO.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: February 20, 2024
    Assignee: Apple Inc.
    Inventors: Reetika Kumari Agarwal, Abbas Komijani
  • Patent number: 11894866
    Abstract: Embodiments presented herein provide apparatus and techniques to reduce a direct current (DC) voltage offset between a transmitter and receiver. Embodiments include a shared reference voltage signal generated by a reference voltage source. The receiver may include a first unit gain buffer to receive a reference voltage signal from the reference voltage source. The transmitter may be communicatively coupled to the receiver via one or more connections and may include a second unit gain buffer communicatively coupled to the first unit gain buffer via one of the connections. An amplifier (e.g., an operation amplifier) of the transmitter may include multiple positive inputs coupled to the second unit gain buffer and an offset tracker. The offset tracker may compensate for a DC offset caused by at least a power supply and/or a ground bounce.
    Type: Grant
    Filed: March 9, 2022
    Date of Patent: February 6, 2024
    Assignee: Apple Inc.
    Inventors: Hongrui Wang, Abbas Komijani, Xinhua Chen
  • Publication number: 20240039564
    Abstract: Embodiments presented herein provide apparatus and techniques to reduce a direct current (DC) voltage offset between a transmitter and receiver. Embodiments include a shared reference voltage signal generated by a reference voltage source. The receiver may include a first unit gain buffer to receive a reference voltage signal from the reference voltage source. The transmitter may be communicatively coupled to the receiver via one or more connections and may include a second unit gain buffer communicatively coupled to the first unit gain buffer via one of the connections. An amplifier (e.g., an operation amplifier) of the transmitter may include multiple positive inputs coupled to the second unit gain buffer and an offset tracker. The offset tracker may compensate for a DC offset caused by at least a power supply and/or a ground bounce.
    Type: Application
    Filed: October 10, 2023
    Publication date: February 1, 2024
    Inventors: Hongrui Wang, Abbas Komijani, Xinhua Chen
  • Patent number: 11881715
    Abstract: An electronic device may include wireless circuitry having a transformer adjustable between first, second, and third modes. The transformer may have first, second, third, and fourth inductors. The third inductor may be magnetically coupled to the first and second inductors with equal coupling constants. The fourth inductor may be magnetically coupled to the first and second inductors with inverse coupling constants. First and second adjustable capacitors coupled to the third and fourth inductors may receive control signals that place the transformer into a selected one of the first, second, or third modes. In the first mode the transformer exhibits a passband that overlaps first and second bands. In the second mode, the transformer passes signals in the second band while filtering interference in the first band. In the third mode, the transformer passes signals in the first band while filtering interference in the second band.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: January 23, 2024
    Assignee: Apple Inc.
    Inventors: Hongrui Wang, Abbas Komijani
  • Publication number: 20240022209
    Abstract: An electronic device may include a transceiver with mixer circuitry that up-converts or down-converts signals based on a voltage-controlled oscillator (VCO) signal. The transceiver circuitry may include first, second, third, and fourth VCOs. Each VCO may include a VCO core that receives a control voltage and an inductor coupled to the VCO core. Fixed linear capacitors may be coupled between the VCO cores. A switching network may be coupled between the VCOs. Control circuitry may place the VCO circuitry in one of four different operating modes and may switch between the operating modes to selectively control current direction in each of the inductors. The VCO circuitry may generate the VCO signal within a respective frequency range in each of the operating modes. The VCO circuitry may exhibit a relatively wide frequency range across all of the operating modes while introducing minimal phase noise to the system.
    Type: Application
    Filed: July 26, 2023
    Publication date: January 18, 2024
    Inventors: Abbas Komijani, Hongrui Wang, Sohrab Emami-Neyestanak
  • Publication number: 20230403014
    Abstract: An electronic device may include wireless circuitry having mixer circuitry configured to receive oscillator signals from a partial-fractional phase-locked loop (PLL). The partial-fractional PLL may include a phase frequency detector, a charge pump, a loop filter, and a frequency divider connected in a loop. To implement the partial-fractional capability of the PLL, the frequency divider may receive a bitstream from a first order sigma delta modulator and a finite impulse response filter. The first order sigma delta modulator may output a periodic non-randomized output. The finite impulse response filter may increase the frequency of toggling of the periodic non-randomized output. Configured and operated in this way, the partial-fractional PLL can exhibit reduced phase noise.
    Type: Application
    Filed: August 9, 2023
    Publication date: December 14, 2023
    Inventors: Reetika K. Agarwal, Abbas Komijani, Hongrui Wang
  • Publication number: 20230403013
    Abstract: An electronic device may include wireless circuitry having mixer circuitry configured to receive oscillator signals from a partial-fractional phase-locked loop (PLL). The partial-fractional PLL may include a phase frequency detector, a charge pump, a loop filter, and a frequency divider connected in a loop. To implement the partial-fractional capability of the PLL, the frequency divider may receive a bitstream from a first order sigma delta modulator and a finite impulse response filter. The first order sigma delta modulator may output a periodic non-randomized output. The finite impulse response filter may increase the frequency of toggling of the periodic non-randomized output. Configured and operated in this way, the partial-fractional PLL can exhibit reduced phase noise.
    Type: Application
    Filed: June 8, 2022
    Publication date: December 14, 2023
    Inventors: Reetika K Agarwal, Abbas Komijani, Hongrui Wang
  • Patent number: 11838068
    Abstract: A transceiver having a shared filter for both transmit and receive modes is disclosed. A transceiver includes a transmitter having an output coupled to a signal node, wherein the transmitter is configured to transmit signals onto the signal node during transceiver operation in a transmit mode. The transceiver also includes a receiver having an input coupled to the signal node, and configured to receive signals from the signal node during operation in the receive mode. The transceiver further includes a first filter coupled to the signal node, wherein the filter is shared by the transmitter and the receiver. The filter is coupled between the transceiver and a first terminal of a transmission line.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: December 5, 2023
    Assignee: Apple Inc.
    Inventors: Yashar Rajavi, Sohrab Emami-Neyestanak, Abbas Komijani
  • Patent number: 11829175
    Abstract: Embodiments disclosed herein relate to a low-voltage dropout regulator and more specifically to improving a power supply rejection ratio (PSRR) of the low dropout voltage regulator. The low dropout voltage regulator may be used to generate various voltages for integrated circuits of an electronic device. In some cases, a P-type metal-oxide-semiconductor (PMOS) low dropout (LDO) voltage regulator may be used. However, the PMOS LDO may not provide a sufficient PSRR or reduction in supply noise. To address these issues, an N-type metal-oxide-semiconductor (NMOS) LDO voltage regulator having an NMOS pass transistor may be used. The NMOS LDO may provide a lower impedance than the PMOS LDO. Further, the NMOS LDO may provide an increased bandwidth and consume a smaller physical area than the PMOS LDO.
    Type: Grant
    Filed: September 12, 2022
    Date of Patent: November 28, 2023
    Assignee: Apple Inc.
    Inventors: Reetika Kumari Agarwal, Abbas Komijani
  • Publication number: 20230378808
    Abstract: An electronic device may include wireless circuitry having a transformer adjustable between first, second, and third modes. The transformer may have first, second, third, and fourth inductors. The third inductor may be magnetically coupled to the first and second inductors with equal coupling constants. The fourth inductor may be magnetically coupled to the first and second inductors with inverse coupling constants. First and second adjustable capacitors coupled to the third and fourth inductors may receive control signals that place the transformer into a selected one of the first, second, or third modes. In the first mode the transformer exhibits a passband that overlaps first and second bands. In the second mode, the transformer passes signals in the second band while filtering interference in the first band. In the third mode, the transformer passes signals in the first band while filtering interference in the second band.
    Type: Application
    Filed: May 23, 2022
    Publication date: November 23, 2023
    Inventors: Hongrui Wang, Abbas Komijani
  • Patent number: 11824593
    Abstract: An electronic device may include a harmonic rejection mixer with a delay line, mixer array, and load. The delay line may generate LO phases. Each mixer in the array may have a first input that receives an LO phase and a second input coupled to an input switch and the first input of the next mixer circuit through an inter-mixer switch. The load may include a set of switches. In a transmit mode, the input switches and set of switches may be closed while the inter-mixer switches are open. In a self-calibration mode, the input switches and set of switches may be open while the inter-mixer switches are closed. A controller may sweep through phase codes for the programmable delay line while storing a digital output from the load. The controller may calibrate the phase code based on the digital output.
    Type: Grant
    Filed: September 9, 2022
    Date of Patent: November 21, 2023
    Assignee: Apple Inc.
    Inventors: Hongrui Wang, Abbas Komijani, Saihua Lin, Sohrab Emami-Neyestanak
  • Patent number: 11824498
    Abstract: Voltage-controlled oscillation circuitry includes multiple cores and multiple mode or gain boosters coupled between the multiple cores. To prevent an undesired operating mode of the voltage-controlled oscillation circuitry from dominating a desired operating mode (e.g., an in-phase operating mode or an out-of-phase operating mode), the mode boosters may increase a desired gain of the desired operating mode and decrease an undesired gain of the undesired operating modes. In particular, mode boosters coupled to terminals of the cores that are associated with the desired operating mode may be enabled, while mode boosters coupled to terminals of the cores that are associated with the undesired operating mode may be disabled.
    Type: Grant
    Filed: April 27, 2022
    Date of Patent: November 21, 2023
    Assignee: Apple Inc.
    Inventors: Hongrui Wang, Abbas Komijani
  • Patent number: 11817823
    Abstract: To prevent an undesired operating mode of voltage-controlled oscillation (VCO) circuitry from dominating a desired operating mode (e.g., an in-phase operating mode or an out-of-phase operating mode), a supply reset and ramp pulse may be provided to the VCO circuitry when switching to a new mode, such that supply voltage to the VCO circuitry is reset (e.g., set to 0 V or another reference voltage), and gradually increased or ramped up back to a steady-state voltage (e.g., used to maintain a mode) within a time duration. Additionally or alternatively, a switch control bootstrap pulse may be provided to the VCO circuitry that is bootstrapped to (e.g., applied instantaneously or concurrently with) switching the VCO circuitry to the new mode. After a time duration, the VCO circuitry may switch back to a steady-state voltage (e.g., used to maintain the new mode).
    Type: Grant
    Filed: May 19, 2022
    Date of Patent: November 14, 2023
    Assignee: Apple Inc.
    Inventors: Hongrui Wang, Abbas Komijani
  • Publication number: 20230352932
    Abstract: An output circuit included in an integrated circuit may employ multiple protection circuits to protect driver devices from damage during an electrostatic discharge event. One protection circuit clamps a signal port to a ground supply node upon detection of the electrostatic discharge event. Another protection circuit increases the voltage level of a control terminal to one of the driver devices during the electrostatic discharge event to reduce the voltage across the driver device and prevent damage to the device.
    Type: Application
    Filed: April 29, 2022
    Publication date: November 2, 2023
    Inventors: Junjun Li, Abbas Komijani, Hongrui Wang