Patents by Inventor Abhijit Jayant Pethe

Abhijit Jayant Pethe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190051725
    Abstract: A nanowire device having a plurality of internal spacers and a method for forming said internal spacers are disclosed. In an embodiment, a semiconductor device comprises a nanowire stack disposed above a substrate, the nanowire stack having a plurality of vertically-stacked nanowires, a gate structure wrapped around each of the plurality of nanowires, defining a channel region of the device, the gate structure having gate sidewalls, a pair of source/drain regions on opposite sides of the channel region; and an internal spacer on a portion of the gate sidewall between two adjacent nanowires, internal to the nanowire stack. In an embodiment, the internal spacers are formed by depositing spacer material in dimples etched adjacent to the channel region. In an embodiment, the dimples are etched through the channel region. In another embodiment, the dimples are etched through the source/drain region.
    Type: Application
    Filed: October 5, 2018
    Publication date: February 14, 2019
    Inventors: Seiyon KIM, Kelin J. KUHN, Tahir GHANI, Anand S. MURTHY, Mark ARMSTRONG, Rafael RIOS, Abhijit Jayant PETHE, Willy RACHMADY
  • Patent number: 10192783
    Abstract: Gate contact structures disposed over active portions of gates and methods of forming such gate contact structures are described. For example, a semiconductor structure includes a substrate having an active region and an isolation region. A gate structure has a portion disposed above the active region and a portion disposed above the isolation region of the substrate. Source and drain regions are disposed in the active region of the substrate, on either side of the portion of the gate structure disposed above the active region. A gate contact structure is disposed on the portion of the gate structure disposed above the active region of the substrate.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: January 29, 2019
    Assignee: Intel Corporation
    Inventors: Abhijit Jayant Pethe, Tahir Ghani, Mark Bohr, Clair Webb, Harry Gomez, Annalisa Cappellani
  • Patent number: 10121856
    Abstract: A nanowire device having a plurality of internal spacers and a method for forming said internal spacers are disclosed. In an embodiment, a semiconductor device comprises a nanowire stack disposed above a substrate, the nanowire stack having a plurality of vertically-stacked nanowires, a gate structure wrapped around each of the plurality of nanowires, defining a channel region of the device, the gate structure having gate sidewalls, a pair of source/drain regions on opposite sides of the channel region; and an internal spacer on a portion of the gate sidewall between two adjacent nanowires, internal to the nanowire stack. In an embodiment, the internal spacers are formed by depositing spacer material in dimples etched adjacent to the channel region. In an embodiment, the dimples are etched through the channel region. In another embodiment, the dimples are etched through the source/drain region.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: November 6, 2018
    Assignee: Intel Corporation
    Inventors: Seiyon Kim, Kelin J. Kuhn, Tahir Ghani, Anand S. Murthy, Mark Armstrong, Rafael Rios, Abhijit Jayant Pethe, Willy Rachmady
  • Publication number: 20180122901
    Abstract: A nanowire device having a plurality of internal spacers and a method for forming said internal spacers are disclosed. In an embodiment, a semiconductor device comprises a nanowire stack disposed above a substrate, the nanowire stack having a plurality of vertically-stacked nanowires, a gate structure wrapped around each of the plurality of nanowires, defining a channel region of the device, the gate structure having gate sidewalls, a pair of source/drain regions on opposite sides of the channel region; and an internal spacer on a portion of the gate sidewall between two adjacent nanowires, internal to the nanowire stack. In an embodiment, the internal spacers are formed by depositing spacer material in dimples etched adjacent to the channel region. In an embodiment, the dimples are etched through the channel region. In another embodiment, the dimples are etched through the source/drain region.
    Type: Application
    Filed: December 29, 2017
    Publication date: May 3, 2018
    Inventors: Seiyon KIM, Kelin J. KUHN, Tahir GHANI, Anand S. MURTHY, Mark ARMSTRONG, Rafael RIOS, Abhijit Jayant PETHE, Willy RACHMADY
  • Patent number: 9859368
    Abstract: A nanowire device having a plurality of internal spacers and a method for forming said internal spacers are disclosed. In an embodiment, a semiconductor device comprises a nanowire stack disposed above a substrate, the nanowire stack having a plurality of vertically-stacked nanowires, a gate structure wrapped around each of the plurality of nanowires, defining a channel region of the device, the gate structure having gate sidewalls, a pair of source/drain regions on opposite sides of the channel region; and an internal spacer on a portion of the gate sidewall between two adjacent nanowires, internal to the nanowire stack. In an embodiment, the internal spacers are formed by depositing spacer material in dimples etched adjacent to the channel region. In an embodiment, the dimples are etched through the channel region. In another embodiment, the dimples are etched through the source/drain region.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: January 2, 2018
    Assignee: Intel Corporation
    Inventors: Seiyon Kim, Kelin J. Kuhn, Tahir Ghani, Anand S. Murthy, Mark Armstrong, Rafael Rios, Abhijit Jayant Pethe, Willy Rachmady
  • Publication number: 20170047400
    Abstract: A nanowire device having a plurality of internal spacers and a method for forming said internal spacers are disclosed. In an embodiment, a semiconductor device comprises a nanowire stack disposed above a substrate, the nanowire stack having a plurality of vertically-stacked nanowires, a gate structure wrapped around each of the plurality of nanowires, defining a channel region of the device, the gate structure having gate sidewalls, a pair of source/drain regions on opposite sides of the channel region; and an internal spacer on a portion of the gate sidewall between two adjacent nanowires, internal to the nanowire stack. In an embodiment, the internal spacers are formed by depositing spacer material in dimples etched adjacent to the channel region. In an embodiment, the dimples are etched through the channel region. In another embodiment, the dimples are etched through the source/drain region.
    Type: Application
    Filed: October 24, 2016
    Publication date: February 16, 2017
    Inventors: Seiyon Kim, Kelin J. KUHN, Tahir GHAN!, Anand S. MURTHY, Mark ARMSTRONG, Rafael RIOS, Abhijit Jayant PETHE, Willy RACHMADY
  • Publication number: 20170047416
    Abstract: Strained gate-all-around semiconductor devices formed on globally or locally isolated substrates are described. For example, a semiconductor device includes a semiconductor substrate. An insulating structure is disposed above the semiconductor substrate. A three-dimensional channel region is disposed above the insulating structure. Source and drain regions are disposed on either side of the three-dimensional channel region and on an epitaxial seed layer. The epitaxial seed layer is composed of a semiconductor material different from the three-dimensional channel region and disposed on the insulating structure. A gate electrode stack surrounds the three-dimensional channel region with a portion disposed on the insulating structure and laterally adjacent to the epitaxial seed layer.
    Type: Application
    Filed: October 26, 2016
    Publication date: February 16, 2017
    Inventors: Annalisa Cappellani, Abhijit Jayant Pethe, Tahir Ghani, Harry Gomez
  • Publication number: 20170025499
    Abstract: Three-dimensional germanium-based semiconductor devices formed on globally or locally isolated substrates are described. For example, a semiconductor device includes a semiconductor substrate. An insulating structure is disposed above the semiconductor substrate. A three-dimensional germanium-containing body is disposed on a semiconductor release layer disposed on the insulating structure. The three-dimensional germanium-containing body includes a channel region and source/drain regions on either side of the channel region. The semiconductor release layer is under the source/drain regions but not under the channel region. The semiconductor release layer is composed of a semiconductor material different from the three-dimensional germanium-containing body. A gate electrode stack surrounds the channel region with a portion disposed on the insulating structure and laterally adjacent to the semiconductor release layer.
    Type: Application
    Filed: October 6, 2016
    Publication date: January 26, 2017
    Inventors: Annalisa Cappellani, Pragyansri Pathi, Bruce E. Beattie, Abhijit Jayant Pethe
  • Publication number: 20170004998
    Abstract: Gate contact structures disposed over active portions of gates and methods of forming such gate contact structures are described. For example, a semiconductor structure includes a substrate having an active region and an isolation region. A gate structure has a portion disposed above the active region and a portion disposed above the isolation region of the substrate. Source and drain regions are disposed in the active region of the substrate, on either side of the portion of the gate structure disposed above the active region. A gate contact structure is disposed on the portion of the gate structure disposed above the active region of the substrate.
    Type: Application
    Filed: September 15, 2016
    Publication date: January 5, 2017
    Inventors: Abhijit Jayant Pethe, Tahir Ghani, Mark Bohr, Clair Webb, Harry Gomez, Annalisa Cappellani
  • Patent number: 9484447
    Abstract: A nanowire device having a plurality of internal spacers and a method for forming said internal spacers are disclosed. In an embodiment, a semiconductor device comprises a nanowire stack disposed above a substrate, the nanowire stack having a plurality of vertically-stacked nanowires, a gate structure wrapped around each of the plurality of nanowires, defining a channel region of the device, the gate structure having gate sidewalls, a pair of source/drain regions on opposite sides of the channel region; and an internal spacer on a portion of the gate sidewall between two adjacent nanowires, internal to the nanowire stack. In an embodiment, the internal spacers are formed by depositing spacer material in dimples etched adjacent to the channel region. In an embodiment, the dimples are etched through the channel region. In another embodiment, the dimples are etched through the source/drain region.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: November 1, 2016
    Assignee: Intel Corporation
    Inventors: Seiyon Kim, Kelin J. Kuhn, Tahir Ghani, Anand S. Murthy, Mark Armstrong, Rafael Rios, Abhijit Jayant Pethe, Willy Rachmady
  • Patent number: 9484272
    Abstract: Strained gate-all-around semiconductor devices formed on globally or locally isolated substrates are described. For example, a semiconductor device includes a semiconductor substrate. An insulating structure is disposed above the semiconductor substrate. A three-dimensional channel region is disposed above the insulating structure. Source and drain regions are disposed on either side of the three-dimensional channel region and on an epitaxial seed layer. The epitaxial seed layer is composed of a semiconductor material different from the three-dimensional channel region and disposed on the insulating structure. A gate electrode stack surrounds the three-dimensional channel region with a portion disposed on the insulating structure and laterally adjacent to the epitaxial seed layer.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: November 1, 2016
    Assignee: Intel Corporation
    Inventors: Annalisa Cappellani, Abhijit Jayant Pethe, Tahir Ghani, Harry Gomez
  • Patent number: 9472399
    Abstract: Three-dimensional germanium-based semiconductor devices formed on globally or locally isolated substrates are described. For example, a semiconductor device includes a semiconductor substrate. An insulating structure is disposed above the semiconductor substrate. A three-dimensional germanium-containing body is disposed on a semiconductor release layer disposed on the insulating structure. The three-dimensional germanium-containing body includes a channel region and source/drain regions on either side of the channel region. The semiconductor release layer is under the source/drain regions but not under the channel region. The semiconductor release layer is composed of a semiconductor material different from the three-dimensional germanium-containing body. A gate electrode stack surrounds the channel region with a portion disposed on the insulating structure and laterally adjacent to the semiconductor release layer.
    Type: Grant
    Filed: May 24, 2015
    Date of Patent: October 18, 2016
    Assignee: Intel Corporation
    Inventors: Annalisa Cappellani, Pragyansri Pathi, Bruce E. Beattie, Abhijit Jayant Pethe
  • Patent number: 9461143
    Abstract: Gate contact structures disposed over active portions of gates and methods of forming such gate contact structures are described. For example, a semiconductor structure includes a substrate having an active region and an isolation region. A gate structure has a portion disposed above the active region and a portion disposed above the isolation region of the substrate. Source and drain regions are disposed in the active region of the substrate, on either side of the portion of the gate structure disposed above the active region. A gate contact structure is disposed on the portion of the gate structure disposed above the active region of the substrate.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: October 4, 2016
    Assignee: Intel Corporation
    Inventors: Abhijit Jayant Pethe, Tahir Ghani, Mark Bohr, Clair Webb, Harry Gomez, Annalisa Cappellani
  • Publication number: 20160284605
    Abstract: Strained gate-all-around semiconductor devices formed on globally or locally isolated substrates are described. For example, a semiconductor device includes a semiconductor substrate. An insulating structure is disposed above the semiconductor substrate. A three-dimensional channel region is disposed above the insulating structure. Source and drain regions are disposed on either side of the three-dimensional channel region and on an epitaxial seed layer. The epitaxial seed layer is composed of a semiconductor material different from the three-dimensional channel region and disposed on the insulating structure. A gate electrode stack surrounds the three-dimensional channel region with a portion disposed on the insulating structure and laterally adjacent to the epitaxial seed layer.
    Type: Application
    Filed: April 30, 2014
    Publication date: September 29, 2016
    Inventors: Annalisa Cappellani, Abhijit Jayant Pethe, Tahir Ghani, Harry Gomez
  • Publication number: 20150318219
    Abstract: Strained gate-all-around semiconductor devices formed on globally or locally isolated substrates are described. For example, a semiconductor device includes a semiconductor substrate. An insulating structure is disposed above the semiconductor substrate. A three-dimensional channel region is disposed above the insulating structure. Source and drain regions are disposed on either side of the three-dimensional channel region and on an epitaxial seed layer. The epitaxial seed layer is composed of a semiconductor material different from the three-dimensional channel region and disposed on the insulating structure. A gate electrode stack surrounds the three-dimensional channel region with a portion disposed on the insulating structure and laterally adjacent to the epitaxial seed layer.
    Type: Application
    Filed: April 30, 2014
    Publication date: November 5, 2015
    Inventors: Annalisa Cappellani, Abhijit Jayant Pethe, Tahir Ghani, Harry Gomez
  • Publication number: 20150255280
    Abstract: Three-dimensional germanium-based semiconductor devices formed on globally or locally isolated substrates are described. For example, a semiconductor device includes a semiconductor substrate. An insulating structure is disposed above the semiconductor substrate. A three-dimensional germanium-containing body is disposed on a semiconductor release layer disposed on the insulating structure. The three-dimensional germanium-containing body includes a channel region and source/drain regions on either side of the channel region. The semiconductor release layer is under the source/drain regions but not under the channel region. The semiconductor release layer is composed of a semiconductor material different from the three-dimensional germanium-containing body. A gate electrode stack surrounds the channel region with a portion disposed on the insulating structure and laterally adjacent to the semiconductor release layer.
    Type: Application
    Filed: May 24, 2015
    Publication date: September 10, 2015
    Inventors: Annalisa Cappellani, Pragyansri Pathi, Bruce E. Beattie, Abhijit Jayant Pethe
  • Patent number: 9041106
    Abstract: Three-dimensional germanium-based semiconductor devices formed on globally or locally isolated substrates are described. For example, a semiconductor device includes a semiconductor substrate. An insulating structure is disposed above the semiconductor substrate. A three-dimensional germanium-containing body is disposed on a semiconductor release layer disposed on the insulating structure. The three-dimensional germanium-containing body includes a channel region and source/drain regions on either side of the channel region. The semiconductor release layer is under the source/drain regions but not under the channel region. The semiconductor release layer is composed of a semiconductor material different from the three-dimensional germanium-containing body. A gate electrode stack surrounds the channel region with a portion disposed on the insulating structure and laterally adjacent to the semiconductor release layer.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: May 26, 2015
    Assignee: Intel Corporation
    Inventors: Annalisa Cappellani, Pragyansri Pathi, Bruce E. Beattie, Abhijit Jayant Pethe
  • Patent number: 8735869
    Abstract: Strained gate-all-around semiconductor devices formed on globally or locally isolated substrates are described. For example, a semiconductor device includes a semiconductor substrate. An insulating structure is disposed above the semiconductor substrate. A three-dimensional channel region is disposed above the insulating structure. Source and drain regions are disposed on either side of the three-dimensional channel region and on an epitaxial seed layer. The epitaxial seed layer is composed of a semiconductor material different from the three-dimensional channel region and disposed on the insulating structure. A gate electrode stack surrounds the three-dimensional channel region with a portion disposed on the insulating structure and laterally adjacent to the epitaxial seed layer.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: May 27, 2014
    Assignee: Intel Corporation
    Inventors: Annalisa Cappellani, Abhijit Jayant Pethe, Tahir Ghani, Harry Gomez
  • Publication number: 20140084342
    Abstract: Strained gate-all-around semiconductor devices formed on globally or locally isolated substrates are described. For example, a semiconductor device includes a semiconductor substrate. An insulating structure is disposed above the semiconductor substrate. A three-dimensional channel region is disposed above the insulating structure. Source and drain regions are disposed on either side of the three-dimensional channel region and on an epitaxial seed layer. The epitaxial seed layer is composed of a semiconductor material different from the three-dimensional channel region and disposed on the insulating structure. A gate electrode stack surrounds the three-dimensional channel region with a portion disposed on the insulating structure and laterally adjacent to the epitaxial seed layer.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 27, 2014
    Inventors: Annalisa Cappellani, Abhijit Jayant Pethe, Tahir Ghani, Harry Gomez
  • Publication number: 20140084370
    Abstract: Three-dimensional germanium-based semiconductor devices formed on globally or locally isolated substrates are described. For example, a semiconductor device includes a semiconductor substrate. An insulating structure is disposed above the semiconductor substrate. A three-dimensional germanium-containing body is disposed on a semiconductor release layer disposed on the insulating structure. The three-dimensional germanium-containing body includes a channel region and source/drain regions on either side of the channel region. The semiconductor release layer is under the source/drain regions but not under the channel region. The semiconductor release layer is composed of a semiconductor material different from the three-dimensional germanium-containing body. A gate electrode stack surrounds the channel region with a portion disposed on the insulating structure and laterally adjacent to the semiconductor release layer.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 27, 2014
    Inventors: Annalisa Cappellani, Pragyansri Pathi, Bruce E. Beattie, Abhijit Jayant Pethe