Patents by Inventor Abhijit Prabhakar Kulkarni

Abhijit Prabhakar Kulkarni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11519292
    Abstract: A method of detecting flame state of a combustor of a turbine engine. The method includes determining at least one of a first derivative and a second derivative of a compressor discharge pressure of a compressor of the turbine engine; determining at least one of a first derivative and a second derivative of a gas turbine exhaust gas temperature of the exhaust gases output by the turbine engine; determining at least one of a first derivative and a second derivative of a gas turbine shaft/rotor speed of the turbine engine; determining at least one of a first derivative and a second derivative of combustor dynamic pressure monitoring; and determining a flame state of a combustor of the turbine engine based on the combustor dynamic pressure monitoring, the determined derivatives of the combustion dynamics, compressor discharge pressure, gas turbine shaft/rotor speed, and gas turbine exhaust gas temperature of the exhaust gases.
    Type: Grant
    Filed: March 24, 2021
    Date of Patent: December 6, 2022
    Assignee: General Electric Company
    Inventors: Timothy Andrew Healy, Abhijit Prabhakar Kulkarni, Scott Arthur Day, John Rogers Huey
  • Publication number: 20220307385
    Abstract: A method of detecting flame state of a combustor of a turbine engine. The method includes determining at least one of a first derivative and a second derivative of a compressor discharge pressure of a compressor of the turbine engine; determining at least one of a first derivative and a second derivative of a gas turbine exhaust gas temperature of the exhaust gases output by the turbine engine; determining at least one of a first derivative and a second derivative of a gas turbine shaft/rotor speed of the turbine engine; determining at least one of a first derivative and a second derivative of combustor dynamic pressure monitoring; and determining a flame state of a combustor of the turbine engine based on the combustor dynamic pressure monitoring, the determined derivatives of the combustion dynamics, compressor discharge pressure, gas turbine shaft/rotor speed, and gas turbine exhaust gas temperature of the exhaust gases.
    Type: Application
    Filed: March 24, 2021
    Publication date: September 29, 2022
    Inventors: Timothy Andrew Healy, Abhijit Prabhakar Kulkarni, Scott Arthur Day, John Rogers Huey
  • Patent number: 10830443
    Abstract: This disclosure relates to systems and methods for tuning combustion dynamics in a combustor. In one embodiment of the disclosure, a method includes providing, via at least one sensor, combustion dynamics amplitude data associated with a combustor. Method may allow monitoring, by an equipment controller communicatively coupled to the at least one sensor, the combustion dynamics amplitude data. The method may allow detecting at least one change in acoustic pressure amplitude associated with combustion in the combustor. In response to detecting the change in the acoustic pressure amplitude, the method proceeds with determining a fuel split change to at least two fuel circuits configured to supply fuel to the combustor, and applying the fuel split change to the combustor.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: November 10, 2020
    Assignee: General Electric Company
    Inventors: Akilezkrishnamurthy Arthanari, Mihir Lal, James Harper, Douglas Edward Dean, Abhijit Prabhakar Kulkarni
  • Publication number: 20180149363
    Abstract: This disclosure relates to systems and methods for tuning combustion dynamics in a combustor. In one embodiment of the disclosure, a method includes providing, via at least one sensor, combustion dynamics amplitude data associated with a combustor. Method may allow monitoring, by an equipment controller communicatively coupled to the at least one sensor, the combustion dynamics amplitude data. The method may allow detecting at least one change in acoustic pressure amplitude associated with combustion in the combustor. In response to detecting the change in the acoustic pressure amplitude, the method proceeds with determining a fuel split change to at least two fuel circuits configured to supply fuel to the combustor, and applying the fuel split change to the combustor.
    Type: Application
    Filed: December 27, 2016
    Publication date: May 31, 2018
    Inventors: Akilezkrishnamurthy Arthanari, Mihir Lal, James Harper, Douglas Edward Dean, Abhijit Prabhakar Kulkarni
  • Patent number: 9382850
    Abstract: A system includes a gas turbine engine having a combustor, and a fuel blending system. The fuel blending system further includes a first fuel supply configured to supply a first fuel, a second fuel supply configured to supply a second fuel, a first fuel circuit, a second fuel circuit, and a controller. The first fuel circuit may be configured to blend the first fuel and the second fuel to form a first to form a first fuel mixture. The second fuel circuit may be configured to blend the first fuel and the second fuel to form a second fuel mixture. The controller may be configured to regulate blending of the first fuel mixture and the second fuel mixture based on a measured operating parameter of the combustor.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: July 5, 2016
    Assignee: General Electric Company
    Inventors: Arvind Venugopal Menon, Alan Meier Truesdale, Abhijit Prabhakar Kulkarni, Predrag Popovic
  • Patent number: 9377202
    Abstract: A system includes a gas turbine engine having a combustor, and a fuel blending system. The fuel blending system further includes a first fuel supply configured to supply a first fuel, a second fuel supply configured to supply a second fuel, a first fuel circuit, a second fuel circuit, and a controller. The first fuel circuit may be configured to blend the first fuel and the second fuel to form a first fuel mixture. The second fuel circuit may be configured to blend the first fuel and the second fuel to form a second fuel mixture. The controller may be configured to regulate blending of the first fuel mixture and the second fuel mixture based on a measured composition of the first fuel.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 28, 2016
    Assignee: General Electric Company
    Inventors: Arvind Venugopal Menon, Alan Meier Truesdale, Abhijit Prabhakar Kulkarni, Predrag Popovic
  • Publication number: 20160068777
    Abstract: A system, method, and computer-readable medium for blending a fuel for use in a gas turbine are disclosed. A measurement of a heating value of a process gas and a measurement of a molecular weight of the process gas is obtained. An estimate of a composition of the process gas is obtained using the obtained measurement of the heating value and the obtained measurement of the molecular weight. A blending ratio of the process gas and a natural gas is selected based on the estimate of the composition of the process gas. The process gas and the natural gas are then blended according to the selected blending ratio to obtain a fuel mixture for use in the gas turbine.
    Type: Application
    Filed: September 5, 2014
    Publication date: March 10, 2016
    Inventors: Arvind Venugopal Menon, Abhijit Prabhakar Kulkarni, Predrag Popovic, Alan Meier Truesdale
  • Publication number: 20140283523
    Abstract: A system includes a gas turbine engine having a combustor, and a fuel blending system. The fuel blending system further includes a first fuel supply configured to supply a first fuel, a second fuel supply configured to supply a second fuel, a first fuel circuit, a second fuel circuit, and a controller. The first fuel circuit may be configured to blend the first fuel and the second fuel to form a first to form a first fuel mixture. The second fuel circuit may be configured to blend the first fuel and the second fuel to form a second fuel mixture. The controller may be configured to regulate blending of the first fuel mixture and the second fuel mixture based on a measured operating parameter of the combustor.
    Type: Application
    Filed: March 21, 2013
    Publication date: September 25, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Arvind Venugopal Menon, Alan Meier Truesdale, Abhijit Prabhakar Kulkarni, Predrag Popovic
  • Publication number: 20140260309
    Abstract: A system includes a gas turbine engine having a combustor, and a fuel blending system. The fuel blending system further includes a first fuel supply configured to supply a first fuel, a second fuel supply configured to supply a second fuel, a first fuel circuit, a second fuel circuit, and a controller. The first fuel circuit may be configured to blend the first fuel and the second fuel to form a first fuel mixture. The second fuel circuit may be configured to blend the first fuel and the second fuel to form a second fuel mixture. The controller may be configured to regulate blending of the first fuel mixture and the second fuel mixture based on a measured composition of the first fuel.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Arvind Venugopal Menon, Alan Meier Truesdale, Abhijit Prabhakar Kulkarni, Predrag Popovic
  • Patent number: 8370044
    Abstract: A gas turbine comprises a plurality of target exhaust temperature determination modules, the plurality of target exhaust temperature modules comprising a nitrogen oxide (NOx) compliance module configured to determine an exhaust temperature at which an exhaust of the gas turbine complies with a maximum permitted level of NOx; at least one bias module, the at least one bias module configured to apply a bias to an output of at least one of the plurality of target exhaust temperature determination modules; and a controller configured to operate the gas turbine to produce the exhaust temperature determined by the NOx compliance module.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: February 5, 2013
    Assignee: General Electric Company
    Inventors: Douglas Edward Dean, Derrick Walter Simons, Abhijit Prabhakar Kulkarni
  • Publication number: 20100332103
    Abstract: A gas turbine comprises a plurality of target exhaust temperature determination modules, the plurality of target exhaust temperature modules comprising a nitrogen oxide (NOx) compliance module configured to determine an exhaust temperature at which an exhaust of the gas turbine complies with a maximum permitted level of NOx; at least one bias module, the at least one bias module configured to apply a bias to an output of at least one of the plurality of target exhaust temperature determination modules; and a controller configured to operate the gas turbine to produce the exhaust temperature determined by the NOx compliance module.
    Type: Application
    Filed: June 26, 2009
    Publication date: December 30, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Douglas Edward Dean, Derrick Walter Simons, Abhijit Prabhakar Kulkarni