Patents by Inventor Abhilash J. Mayur

Abhilash J. Mayur has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7863193
    Abstract: Post-laser annealing dopant deactivation is minimized by performing certain silicide formation process steps prior to laser annealing. A base metal layer is deposited on the source-drain regions and the gate electrode, followed by deposition of an overlying compression cap layer, to prevent metal agglomeration at the silicon melting temperature. Thereafter, a rapid thermal process is performed to heat the substrate sufficiently to form metal silicide contacts at the top surfaces of the source-drain regions and of the gate electrode. The method further includes removing the remainder of the metal-containing layer and then depositing an optical absorber layer over the substrate prior to laser annealing near the silicon melting temperature.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: January 4, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Yi Ma, Philip Allan Kraus, Christopher Sean Olsen, Khaled Z. Ahmed, Abhilash J. Mayur
  • Publication number: 20100323532
    Abstract: The present invention generally describes one ore more methods that are used to perform an annealing process on desired regions of a substrate. In one embodiment, an amount of energy is delivered to the surface of the substrate to preferentially melt certain desired regions of the substrate to remove unwanted damage created from prior processing steps (e.g., crystal damage from implant processes), more evenly distribute dopants in various regions of the substrate, and/or activate various regions of the substrate. The preferential melting processes will allow more uniform distribution of the dopants in the melted region, due to the increased diffusion rate and solubility of the dopant atoms in the molten region of the substrate. The creation of a melted region thus allows: 1) the dopant atoms to redistribute more uniformly, 2) defects created in prior processing steps to be removed, and 3) regions that have hyper-abrupt dopant concentrations to be formed.
    Type: Application
    Filed: August 12, 2010
    Publication date: December 23, 2010
    Inventors: Paul Carey, Aaron Muir Hunter, Dean Jennings, Abhilash J. Mayur, Stephen Moffatt, William Schaffer, Timothy N. Thomas, Mark Yam
  • Publication number: 20100273334
    Abstract: A method and apparatus for thermally processing a substrate is provided. A substrate is disposed within a processing chamber configured for thermal processing by directing electromagnetic energy toward a surface of the substrate. An energy blocker is provided to block at least a portion of the energy directed toward the substrate. The blocker prevents damage to the substrate from thermal stresses as the incident energy approaches an edge of the substrate.
    Type: Application
    Filed: July 12, 2010
    Publication date: October 28, 2010
    Inventors: Blake Koelmel, Robert C. McIntosh, David DL Larmagnac, Alexander N. Lerner, Abhilash J. Mayur, Joseph Yudovsky
  • Publication number: 20100264123
    Abstract: A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 ?m is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
    Type: Application
    Filed: June 28, 2010
    Publication date: October 21, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Dean Jennings, Haifan Liang, Mark Yam, Vijay Parihar, Abhilash J. Mayur, Aaron Hunter, Bruce Adams, Joseph Michael Ranish
  • Patent number: 7804042
    Abstract: In a laser annealing system for workpieces such as semiconductor wafers, a pyrometer wavelength response band is established within a narrow window lying between the laser emission band and a fluorescence emission band from the optical components of the laser system, the pyrometer response band lying in a wavelength region at which the optical absorber layer on the workpiece has an optical absorption coefficient as great as or greater than the underlying workpiece. A multi-layer razor-edge interference filter having a 5-8 nm wavelength cut-off edge transition provides the cut-off of the laser emission at the bottom end of the pyrometer response band.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: September 28, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Jiping Li, Bruce E. Adams, Timothy N. Thomas, Aaron Muir Hunter, Abhilash J. Mayur, Rajesh S. Ramanujam
  • Patent number: 7754518
    Abstract: A method and apparatus for thermally processing a substrate is provided. A substrate is disposed within a processing chamber configured for thermal processing by directing electromagnetic energy toward a surface of the substrate. An energy blocker is provided to block at least a portion of the energy directed toward the substrate. The blocker prevents damage to the substrate from thermal stresses as the incident energy approaches an edge of the substrate.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: July 13, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Blake Koelmel, Robert C. McIntosh, David D L Larmagnac, Alexander N. Lerner, Abhilash J. Mayur, Joseph Yudovsky
  • Patent number: 7737036
    Abstract: Post-laser annealing dopant deactivation is minimized by performing certain low temperature process steps prior to laser annealing.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: June 15, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Yi Ma, Philip Allan Kraus, Christopher Sean Olsen, Khaled Z. Ahmed, Abhilash J. Mayur
  • Patent number: 7717617
    Abstract: A thermal processing system includes a source of laser radiation emitting at a laser wavelength, beam projection optics disposed between the reflective surface and a substrate support capable of holding a substrate to be processed, a pyrometer responsive to a pyrometer wavelength, and a wavelength responsive optical element having a first optical path for light in a first wavelength range including the laser wavelength, the first optical path being between the source of laser radiation and the beam projection optics, and a second optical path for light in a second wavelength range including the pyrometer wavelength, the second optical path being between the beam projection optics and the pyrometer. The system can further include a pyrometer wavelength blocking filter between the source of laser radiation and the wavelength responsive optical element.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: May 18, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Bruce E. Adams, Dean Jennings, Aaron M. Hunter, Abhilash J. Mayur, Vijay Parihar, Timothy N. Thomas
  • Publication number: 20100068898
    Abstract: A method and apparatus are provided for treating a substrate. The substrate is positioned on a support in a thermal treatment chamber. Electromagnetic radiation is directed toward the substrate to anneal a portion of the substrate. Other electromagnetic radiation is directed toward the substrate to preheat a portion of the substrate. The preheating reduces thermal stresses at the boundary between the preheat region and the anneal region. Any number of anneal and preheat regions are contemplated, with varying shapes and temperature profiles, as needed for specific embodiments. Any convenient source of electromagnetic radiation may be used, such as lasers, heat lamps, white light lamps, or flash lamps.
    Type: Application
    Filed: September 17, 2008
    Publication date: March 18, 2010
    Inventors: STEPHEN MOFFATT, Abhilash J. Mayur, Sundar Ramamurthy, Joseph Ranish, Aaron Hunter
  • Publication number: 20100065547
    Abstract: A method and apparatus are provided for treating a substrate. The substrate is positioned on a support in a thermal treatment chamber. Electromagnetic radiation is directed toward the substrate to anneal a portion of the substrate. Other electromagnetic radiation is directed toward the substrate to preheat a portion of the substrate. The preheating reduces thermal stresses at the boundary between the preheat region and the anneal region. Any number of anneal and preheat regions are contemplated, with varying shapes and temperature profiles, as needed for specific embodiments. Any convenient source of electromagnetic radiation may be used, such as lasers, heat lamps, white light lamps, or flash lamps.
    Type: Application
    Filed: September 17, 2008
    Publication date: March 18, 2010
    Inventors: STEPHEN MOFFATT, Abhilash J. Mayur, Sundar Ramamurthy, Joseph Ranish, Aaron Hunter
  • Patent number: 7674999
    Abstract: A dynamic surface anneal apparatus for annealing a semiconductor workpiece has a workpiece support for supporting a workpiece, an optical source and scanning apparatus for scanning the optical source and the workpiece support relative to one another along a fast axis. The optical source includes an array of laser emitters arranged generally in successive rows of the emitters, the rows being transverse to the fast axis. Plural collimating lenslets overlie respective ones of the rows of emitters and provide collimation along the fast axis. The selected lenslets have one or a succession of optical deflection angles corresponding to beam deflections along the fast axis for respective rows of emitters. Optics focus light from the array of laser emitters onto a surface of the workpiece to form a succession of line beams transverse to the fast axis spaced along the fast axis in accordance with the succession of deflection angles.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: March 9, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Dean Jennings, Abhilash J. Mayur, Timothy N. Thomas, Vijay Parihar, Vedapuram S. Achutharaman, Randhir P. S. Thakur
  • Publication number: 20090311880
    Abstract: A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 ?m is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
    Type: Application
    Filed: August 24, 2009
    Publication date: December 17, 2009
    Applicant: Applied Materials, Inc.
    Inventors: Dean JENNINGS, Haifan LIANG, Mark YAM, Vijay PARIHAR, Abhilash J. MAYUR, Aaron HUNTER, Bruce ADAMS, Joseph Michael RANISH
  • Publication number: 20090296774
    Abstract: Embodiments of the invention provide a method and an apparatus for detecting the temperature of a substrate surface. In one embodiment, a method for measuring the temperature is provided which includes exposing the surface of the substrate to a laser beam radiating from a laser source, radiating emitted light from a portion of the surface of the substrate, through the shadow ring, and towards a thermal sensor, and determining the temperature of the portion of the surface of the substrate from the emitted light. The substrate may be disposed on a substrate support within a treatment region and a shadow ring may be disposed between the laser source and the surface of the substrate. The shadow ring may be selectively opaque to the laser beam and transparent to the emitted light.
    Type: Application
    Filed: May 29, 2009
    Publication date: December 3, 2009
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Blake Koelmel, Abhilash J. Mayur
  • Patent number: 7611976
    Abstract: Embodiments of the invention generally provide a method for forming a doped silicon-containing material on a substrate. In one embodiment, the method provides depositing a polycrystalline layer on a dielectric layer and implanting the polycrystalline layer with a dopant to form a doped polycrystalline layer having a dopant concentration within a range from about 1×1019 atoms/cm3 to about 1×1021 atoms/cm3, wherein the doped polycrystalline layer contains silicon or may contain germanium, carbon, or boron. The substrate may be heated to a temperature of about 800° C. or higher, such as about 1,000° C., during the rapid thermal anneal. Subsequently, the doped polycrystalline layer may be exposed to a laser anneal and heated to a temperature of about 1,000° C. or greater, such within a range from about 1,050° C. to about 1,400° C., for about 500 milliseconds or less, such as about 100 milliseconds or less.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: November 3, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Yi Ma, Khaled Z. Ahmed, Kevin L. Cunningham, Robert C. McIntosh, Abhilash J. Mayur, Haifan Liang, Mark Yam, Toi Yue Becky Leung, Christopher Olsen, Shulin Wang, Majeed Foad, Gary Eugene Miner
  • Publication number: 20090261078
    Abstract: The time between illumination of adjacent zones of a workpiece edge is extended by a long cool-down period or delay, by interlacing a radiation beam scanning pattern. During the cool-down period, the beam successively scans (along the fast axis) two rows separated by about half the wafer diameter, and travels back and then forth (along the slow axis) across the distance between the two rows, while the radiation beam source continuously generates the beam.
    Type: Application
    Filed: September 29, 2008
    Publication date: October 22, 2009
    Applicant: Applied Materials, Inc.
    Inventors: KAI MA, Abhilash J. Mayur, Vijay Parihar
  • Publication number: 20090209112
    Abstract: A method and apparatus for thermally processing a substrate is provided. A substrate is disposed within a processing chamber configured for thermal processing by directing electromagnetic energy toward a surface of the substrate. An energy blocker is provided to block at least a portion of the energy directed toward the substrate. The blocker prevents damage to the substrate from thermal stresses as the incident energy approaches an edge of the substrate.
    Type: Application
    Filed: February 15, 2008
    Publication date: August 20, 2009
    Inventors: Blake Koelmel, Robert C. McIntosh, David DL Larmagnac, Alexander N. Lerner, Abhilash J. Mayur, Joseph Yudovsky
  • Publication number: 20090181553
    Abstract: Embodiments of the invention contemplate a method, apparatus and system that are used to support and position a substrate on a surface that is at a different temperature than the initial, or incoming, substrate temperature. Embodiments of the invention may also include a method of controlling the transfer of heat between a substrate and substrate support positioned in a processing chamber. The apparatus and methods described herein generally may also provide an inexpensive and simple way of accurately positioning a substrate on a substrate support that is positioned in a semiconductor processing chamber. Substrate processing chambers that can benefit from the various embodiments described herein include, but are not limited to RTP, CVD, PVD, ALD, plasma etching, and/or laser annealing chambers.
    Type: Application
    Filed: January 11, 2008
    Publication date: July 16, 2009
    Inventors: Blake Koelmel, Abhilash J. Mayur, Kai Ma, Alexander N. Lerner
  • Publication number: 20090152247
    Abstract: A dynamic surface anneal apparatus for annealing a semiconductor workpiece has a workpiece support for supporting a workpiece, an optical source and scanning apparatus for scanning the optical source and the workpiece support relative to one another along a fast axis. The optical source includes an array of laser emitters arranged generally in successive rows of the emitters, the rows being transverse to the fast axis. Plural collimating lenslets overlie respective ones of the rows of emitters and provide collimation along the fast axis. The selected lenslets have one or a succession of optical deflection angles corresponding to beam deflections along the fast axis for respective rows of emitters. Optics focus light from the array of laser emitters onto a surface of the workpiece to form a succession of line beams transverse to the fast axis spaced along the fast axis in accordance with the succession of deflection angles.
    Type: Application
    Filed: November 4, 2008
    Publication date: June 18, 2009
    Inventors: Dean Jennings, Abhilash J. Mayur, Timothy N. Thomas, Vijay Parihar, Vedapuram S. Achutharaman, Randhir P.S. Thakur
  • Publication number: 20090084986
    Abstract: A thermal processing system includes a source of laser radiation emitting at a laser wavelength, beam projection optics disposed between the reflective surface and a substrate support capable of holding a substrate to be processed, a pyrometer responsive to a pyrometer wavelength, and a wavelength responsive optical element having a first optical path for light in a first wavelength range including the laser wavelength, the first optical path being between the source of laser radiation and the beam projection optics, and a second optical path for light in a second wavelength range including the pyrometer wavelength, the second optical path being between the beam projection optics and the pyrometer. The system can further include a pyrometer wavelength blocking filter between the source of laser radiation and the wavelength responsive optical element.
    Type: Application
    Filed: September 12, 2008
    Publication date: April 2, 2009
    Inventors: Bruce E. Adams, Dean Jennings, Aaron M. Hunter, Abhilash J. Mayur, Vijay Parihar, Timothy N. Thomas
  • Patent number: 7494272
    Abstract: Apparatus for dynamic surface annealing of a semiconductor wafer includes a source of laser radiation emitting at a laser wavelength and comprising an array of lasers arranged in rows and columns, the optical power of each the laser being individual adjustable and optics for focusing the radiation from the array of lasers into a narrow line beam in a workpiece plane corresponding to a workpiece surface, whereby the optics images respective columns of the laser array onto respective sections of the narrow line beam. A pyrometer sensor is provided that is sensitive to a pyrometer wavelength. An optical element in an optical path of the optics is tuned to divert radiation emanating from the workpiece plane to the pyrometry sensor. As a result, the optics images each of the respective section of the narrow line beam onto a corresponding portion of the pyrometer sensor.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: February 24, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Timothy N. Thomas, Dean Jennings, Bruce E. Adams, Abhilash J. Mayur