Patents by Inventor Abhinav Kumar Vinod

Abhinav Kumar Vinod has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11175563
    Abstract: Systems and methods in accordance with embodiments of the invention implement all-microwave stabilized microresonator-based optical frequency comb. In one embodiment, an all-microwave stabilized microresonator-based optical frequency comb includes: an optical pump configured to generate pulses of light; a microresonator including an input configured to receive pulses generated by an optical pump and an output configured to generate an optical frequency comb signal characterized by frep and ?; where frep describes spacing of frequency components in the optical frequency comb; where the optical frequency comb includes a primary comb and a plurality of subcombs and ? is a frequency offset between subcombs; and two phase locked loops that phase lock frep and ? to low noise microwave oscillators by modulating output power and pump frequency of the optical pump.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: November 16, 2021
    Assignee: The Regents of the University of California
    Inventors: Chee Wei Wong, Shu-Wei Huang, Abhinav Kumar Vinod
  • Publication number: 20210286230
    Abstract: Systems and methods in accordance with embodiments of the invention implement all-microwave stabilized microresonator-based optical frequency comb. In one embodiment, an all-microwave stabilized microresonator-based optical frequency comb includes: an optical pump configured to generate pulses of light; a microresonator including an input configured to receive pulses generated by an optical pump and an output configured to generate an optical frequency comb signal characterized by frep and ?; where frep describes spacing of frequency components in the optical frequency comb; where the optical frequency comb includes a primary comb and a plurality of subcombs and ? is a frequency offset between subcombs; and two phase locked loops that phase lock frep and ? to low noise microwave oscillators by modulating output power and pump frequency of the optical pump.
    Type: Application
    Filed: August 17, 2017
    Publication date: September 16, 2021
    Applicant: The Regents of the University of California
    Inventors: Chee Wei Wong, Shu-Wei Huang, Abhinav Kumar Vinod
  • Patent number: 11105979
    Abstract: Based on graphene heterostructure in chip-scale silicon nitride microresonators, optoelectronic control and modulation in frequency combs via group velocity dispersion modulation can be demonstrated. By tuning graphene Fermi level from 0.50 eV to 0.65 eV via electric-field gating, deterministic in-cavity group velocity dispersion control from anomalous (?62 fs2/mm) to normal (+9 fs2/mm) can be achieved with Q factor remaining high at 106. Consequently, both the primary comb lines and the full comb spectra can be controllable dynamically with the on/off switching of the Cherenkov radiation, the tuning of the primary comb lines from 2.3 THz to 7.2 THz, and the comb span control from zero comb lines to ˜781 phase-locked comb lines, directly via the DC voltage.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: August 31, 2021
    Assignee: The Regents of the University of California
    Inventors: Baicheng Yao, Shu-Wei Huang, Chee Wei Wong, Abhinav Kumar Vinod
  • Publication number: 20210063646
    Abstract: Based on graphene heterostructure in chip-scale silicon nitride microresonators, optoelectronic control and modulation in frequency combs via group velocity dispersion modulation can be demonstrated. By tuning graphene Fermi level from 0.50 eV to 0.65 eV via electric-field gating, deterministic in-cavity group velocity dispersion control from anomalous (?62 fs2/mm) to normal (+9 fs2/mm) can be achieved with Q factor remaining high at 106. Consequently, both the primary comb lines and the full comb spectra can be controllable dynamically with the on/off switching of the Cherenkov radiation, the tuning of the primary comb lines from 2.3 THz to 7.2 THz, and the comb span control from zero comb lines to ˜781 phase-locked comb lines, directly via the DC voltage.
    Type: Application
    Filed: August 30, 2018
    Publication date: March 4, 2021
    Applicant: The Regents of the University of California
    Inventors: Baicheng Yao, Shu-Wei Huang, Chee Wei Wong, Abhinav Kumar Vinod