Patents by Inventor Abhishek D. Saxena

Abhishek D. Saxena has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8404194
    Abstract: Disclosed is a separation media, comprising an upstream layer, comprising fibers, wherein the upstream layer has a mean flow pore size of 8 microns or less; and a downstream layer, comprising fibers. The separation media is designed to separate red blood cells from liquid specimens such as blood and allow a filtrate, such as blood plasma, to flow from said downstream layer. Also provided is a diagnostic test device incorporating the separation media. Further disclosed is a method for separating red blood cells from a liquid specimen.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: March 26, 2013
    Assignee: Lydall, Inc.
    Inventors: Abhishek D. Saxena, John C. Ramsay
  • Publication number: 20120085695
    Abstract: Disclosed is a media (such as a filter media) having one or more carbon nanotube (CNT)-containing layer. Each CNT-containing layer contains high temperature refractory fibers (e.g., staple quartz fibers and/or ceramic refractory fibers) that have melting temperatures greater than about 600° C. and in situ grown CNTs. Substantially all of the in situ grown CNTs have one end thereof associated with the fibers. This results in substantially all of the in situ grown CNTs extending away from substantially all of the fibers. Moreover, substantially all of the in situ grown CNTs are dispersed throughout the fibers. In one embodiment the media also includes one or more supporting layer. Each supporting layer contains high temperature refractory fibers that have melting temperatures greater than about 600° C., optionally bulk refractory fibers, optionally E-glass fibers, and optionally microglass fibers.
    Type: Application
    Filed: October 11, 2010
    Publication date: April 12, 2012
    Applicants: NanoLab, Inc., Lydall, Inc.
    Inventors: Abhishek D. SAXENA, David L. CARNAHAN, Kapil KULKARNI, Stephen E. GROSS
  • Patent number: 7897529
    Abstract: There is provided a substrate (1) capable of carrying uniformly dispersed, finely divided, particulate, solid particles, e.g., catalyst particles (10) and sustaining temperatures in excess of 1200 degrees F. The substrate comprises a top layer (2) for containing the particles (10) and composed of quartz fibers (4) with an average diameter of between about 0.1 and 4 microns and about 0 to 13% of microglass fibers having a softening point of about 1000 degrees F. A support layer (3) is composed of the fibers of the top layer and, in addition, bulk refractory, e.g., ceramic, fibers (6) having and average diameter of about 1 to 4 microns and 0 to 50% of chopped e-glass fiber (7). A method for producing the substrate is provided that includes wet laying the top and bottom layers in spaced apart times so that the juncture (8) between the two layers has intermingled fibers whereby the consolidated layers are not easily separated.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: March 1, 2011
    Assignee: Lydall, Inc.
    Inventors: Abhishek D. Saxena, Paul N. Segit, Stephen E. Gross
  • Publication number: 20090325143
    Abstract: Disclosed is a separation media, comprising an upstream layer, comprising fibers, wherein the upstream layer has a mean flow pore size of 8 microns or less; and a downstream layer, comprising fibers. The separation media is designed to separate red blood cells from liquid specimens such as blood and allow a filtrate, such as blood plasma, to flow from said downstream layer. Also provided is a diagnostic test device incorporating the separation media. Further disclosed is a method for separating red blood cells from a liquid specimen.
    Type: Application
    Filed: June 25, 2009
    Publication date: December 31, 2009
    Inventors: Abhishek D. SAXENA, John C. Ramsay
  • Publication number: 20080268232
    Abstract: There is provided a substrate (1) capable of carrying uniformly dispersed, finely divided, particulate, solid particles, e. g., catalyst particles (10) and sustaining temperatures in excess of 1200 degrees F. The substrate comprises a top layer (2) for containing the particles (10) and composed of quartz fibers (4) with an average diameter of between about 0.1 and 4 microns and about 0 to 13% of microglass fibers having a softening point of about 1000 degrees F. A support layer (3) is composed of the fibers of the top layer and, in addition, bulk refractory, e. g., ceramic, fibers (6) having and average diameter of about 1 to 4 microns and 0 to 50% of chopped e-glass fiber (7). A method for producing the substrate is provided that includes wet laying the top and bottom layers in spaced apart times so that the juncture (8) between the two layers has intermingled fibers whereby the consolidated layers are not easily separated.
    Type: Application
    Filed: March 21, 2008
    Publication date: October 30, 2008
    Applicant: LYDALL, INC.
    Inventors: Abhishek D. Saxena, Paul N. Segit, Stephen E. Cross