Patents by Inventor Abraham P. Gelbein

Abraham P. Gelbein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9139503
    Abstract: A process for the production of dialkyl ether, the process including: feeding a stream comprising an alkyl alcohol to a distillation column reactor system; concurrently in the distillation column reactor system: i) contacting the alkyl alcohol with a catalytic distillation structure in a distillation reaction zone thereby catalytically reacting at least a portion of the alkyl alcohol to form a corresponding dialkyl ether and water; and ii) fractionating the resulting dialkyl ether from the water; operating the distillation column reactor system to obtain substantially complete conversion of the alkyl alcohol to form the corresponding dialkyl ether and water; recovering the dialkyl ether from the distillation column reactor as an overheads fraction; recovering the water from the distillation column reactor as a bottoms fraction.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: September 22, 2015
    Assignee: Lummus Technology Inc.
    Inventors: Lawrence A. Smith, Jr., Abraham P. Gelbein, Christopher C. Boyer
  • Patent number: 8153854
    Abstract: A process for producing an alkylate having a low Reid vapor pressure, the process including: contacting a C6+-containing hydrocarbon stream with a mixture of isopentane and isobutane in the presence of an acid catalyst in an alkylation reactor to form a dilute alkylate product, wherein the C6+-containing hydrocarbon stream includes at least one of oligomers of C3 to C5 olefins and a dilute alkylate produced by contacting an isoparaffin with at least one of C3 to C5 olefins and oligomers of C3 to C5 olefins; fractionating the dilute alkylate product to form an isobutane-rich fraction, a n-butane-rich fraction, a fraction containing isopentane, and an alkylate product having a Reid vapor pressure less than 0.35 bar (5 psi); recycling at least a portion of the fraction containing isopentane to the alkylation reactor.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: April 10, 2012
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., Abraham P. Gelbein, William M. Cross, Jr.
  • Patent number: 7977525
    Abstract: A process for treating an alkylation feedstock comprising olefins, n-alkanes, and iso-alkanes, the process including: contacting at least a portion of the alkylation feedstock with sulfuric acid in a reaction zone under conditions to form sulfate esters of the olefins; separating the n-alkanes and the iso-alkanes from the sulfuric acid and the sulfate esters; recovering the n-alkanes and the iso-alkanes in a first product stream; and recovering the sulfate esters in a second product stream; wherein the sulfuric acid has a strength titrating as below 75 weight percent H2SO4/water mixtures.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: July 12, 2011
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., Abraham P. Gelbein, William M. Cross, Jr.
  • Patent number: 7850929
    Abstract: An internal static mixing system such as a disperser of mesh wire or expanded metal co-knit with a multi filament material selected from inert polymers, catalytic polymers, catalytic metals or mixtures in combination with a vertical reactor having a reaction zone and the disperser disposed in said reaction zone, particularly for carrying out paraffin alkylation using acid catalyst is disclosed. The wire mesh provides the structural integrity of the system as well as the open space required in reactors for the movement of vapors and liquids though the system. The disperser may be in sheets, bundles or bales or positioned within a frame.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: December 14, 2010
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., Abraham P. Gelbein, John R. Adams
  • Publication number: 20090306448
    Abstract: A process for producing an alkylate having a low Reid vapor pressure, the process including: contacting a C6+-containing hydrocarbon stream with a mixture of isopentane and isobutane in the presence of an acid catalyst in an alkylation reactor to form a dilute alkylate product, wherein the C6+-containing hydrocarbon stream includes at least one of oligomers of C3 to C5 olefins and a dilute alkylate produced by contacting an isoparaffin with at least one of C3 to C5 olefins and oligomers of C3 to C5 olefins; fractionating the dilute alkylate product to form an isobutane-rich fraction, a n-butane-rich fraction, a fraction containing isopentane, and an alkylate product having a Reid vapor pressure less than 0.35 bar (5 psi); recycling at least a portion of the fraction containing isopentane to the alkylation reactor.
    Type: Application
    Filed: June 6, 2008
    Publication date: December 10, 2009
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventors: Lawrence A. Smith, JR., Abraham P. Gelbein, William M. Cross, JR.
  • Publication number: 20090198091
    Abstract: A process for treating an alkylation feedstock comprising olefins, n-alkanes, and iso-alkanes, the process including: contacting at least a portion of the alkylation feedstock with sulfuric acid in a reaction zone under conditions to form sulfate esters of the olefins; separating the n-alkanes and the iso-alkanes from the sulfuric acid and the sulfate esters; recovering the n-alkanes and the iso-alkanes in a first product stream; and recovering the sulfate esters in a second product stream; wherein the sulfuric acid has a strength titrating as below 75 weight percent H2SO4/water mixtures.
    Type: Application
    Filed: January 31, 2008
    Publication date: August 6, 2009
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventors: Lawrence A. Smith, JR., Abraham P. Gelbein, William M. Cross, JR.
  • Publication number: 20090069607
    Abstract: A process for the production of dialkyl ether, the process including: feeding a stream comprising an alkyl alcohol to a distillation column reactor system; concurrently in the distillation column reactor system: i) contacting the alkyl alcohol with a catalytic distillation structure in a distillation reaction zone thereby catalytically reacting at least a portion of the alkyl alcohol to form a corresponding dialkyl ether and water; and ii) fractionating the resulting dialkyl ether from the water; operating the distillation column reactor system to obtain substantially complete conversion of the alkyl alcohol to form the corresponding dialkyl ether and water; recovering the dialkyl ether from the distillation column reactor as an overheads fraction; recovering the water from the distillation column reactor as a bottoms fraction.
    Type: Application
    Filed: September 10, 2007
    Publication date: March 12, 2009
    Applicant: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, JR., Abraham P. Gelbein, Christopher C. Boyer
  • Patent number: 7494584
    Abstract: An energy efficient process scheme for a highly exothermic reaction-distillation system in which the reactor is external to the distillation column and the feed to the reactor is a mixture of at least one liquid product stream from the distillation column with or without other liquid/vapor reactants. The reactor is operated under adiabatic and boiling point conditions and at a pressure that results in vaporizing a portion of the liquid flow through the reactor due to the heat of reaction. Under these conditions, reaction temperature is controlled by reactor pressure. The pressure (and hence the temperature) is maintained at a sufficiently high level such that the reactor effluent can be efficiently used to provide reboil heat for the distillation column.
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: February 24, 2009
    Assignee: Catalytic Distillation Technologies
    Inventors: Arvids Judzis, Abraham P. Gelbein, John R. Adams, Christopher C. Boyer
  • Patent number: 7408090
    Abstract: Acetylenes and dienes in a stream containing hydrogen, methane, C2-C6 olefins and paraffins, C2-C6 acetylenes and dienes, benzene, toluene, xylenes, and other C6+ components are hydrogenated in a downflow boiling point reactor wherein the heat of reaction is absorbed by the liquid in the reactor which produces a vapor. Besides the feed to the reactor there is a recirculating stream which is fed at a rate sufficient to ensure that the catalyst particles within the reactor are wetted. A third stream, which is provided from a second downstream liquid/vapor separator from partially condensed vapor from the first downstream liquid/vapor separator corresponding to the mass evaporated in the reactor, is fed to the reactor. The composition of the third stream controls the steady state composition of the liquid flowing through the reactor.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: August 5, 2008
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., Abraham P. Gelbein
  • Patent number: 7368617
    Abstract: Acetylenes and dienes in a stream containing hydrogen, methane, C2-C6 olefins and paraffins, C2-C6 acetylenes and dienes, benzene, toluene, xylenes, and other C6+ components are hydrogenated in a downflow boiling point reactor wherein the heat of reaction is absorbed by the liquid in the reactor which produces a vapor. Besides the feed to the reactor there is a recirculating stream which is fed at a rate sufficient to ensure that the catalyst particles within the reactor are wetted. A third stream, which is taken from a downstream distillation column, is fed to provide the make up mass corresponding to the mass evaporated in the reactor. The composition of the this third stream controls the steady state composition of the liquid flowing through the reactor.
    Type: Grant
    Filed: November 8, 2004
    Date of Patent: May 6, 2008
    Assignee: Catalytic Distillation Technologies
    Inventors: Abraham P. Gelbein, Lawrence A. Smith, Jr.
  • Patent number: 7344692
    Abstract: A process for the regeneration of sulfuric acid contaminated with hydrocarbons and water to produce pure concentration acid comprising: contacting sulfuric acid contaminated with hydrocarbons and water with oxygen and elemental sulfur in the presence of a vanadium containing catalyst in a reaction zone, maintaining at least a portion of the acid in the liquid phase, converting hydrocarbon to carbon oxides and water, and converting sulfur and sulfurdioxide to sulfurtrioxide, separating the reactor effluent into a vapor stream and a liquid stream and cooling and partially condensing of the vapor stream to concentrate clean acid.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: March 18, 2008
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., Abraham P. Gelbein
  • Publication number: 20080063593
    Abstract: A process for the regeneration of spent sulfuric acid comprises decomposing the spent sulfuric acid to SO2, a reducing agent, such as hydrocarbon and water, preferably in a thin film on a solid surface in the presence of a hydrocarbon reducing agent. The SO2 generated in the decomposition step is converted to SO3 in the presence of water and concentrated sulfuric acid is condensed out.
    Type: Application
    Filed: September 8, 2006
    Publication date: March 13, 2008
    Inventors: Lawrence A. Smith, Abraham P. Gelbein
  • Patent number: 7320745
    Abstract: An energy efficient process scheme for a highly exothermic reaction-distillation system in which the reactor is external to the distillation column and the feed to the reactor is a mixture of at least one liquid product stream from the distillation column with or without other liquid/vapor reactants. The reactor is operated under adiabatic and boiling point conditions and at a pressure that results in vaporizing a portion of the liquid flow through the reactor due to the heat of reaction. Under these conditions, reaction temperature is controlled by reactor pressure. The pressure (and hence the temperature) is maintained at a sufficiently high level such that the reactor effluent can be efficiently used to provide reboil heat for the distillation column.
    Type: Grant
    Filed: January 19, 2005
    Date of Patent: January 22, 2008
    Assignee: Catalytic Distillation Technologies
    Inventors: Arvids Judzis, Jr., Abraham P. Gelbein, John R. Adams, Christopher C. Boyer
  • Patent number: 7319180
    Abstract: A process for the alkylation of alkane with olefin or olefin precursor such as an oligomer of tertiary olefin comprising contacting a liquid system comprising acid catalyst, isoparaffin and olefin in concurrent downflow into contact in a reaction zone with a disperser mesh under conditions of temperature and pressure to react said isoparaffin and said olefin to produce an alkylate product is disclosed. Preferably, the liquid system is maintained at about its boiling point in the reaction zone. Unexpectedly, the olefin oligomers have been found to function as olefin precursors and not as olefins in the reaction. Thus, for example, a cold acid alkylation using an oligomer of isobutene (principally dimer and trimer) with isobutane produces isooctane with the isobutane reacting with the constituent isobutene units of the oligomers on a molar basis. The product isooctane is essentially the same as that produced in the conventional cold acid process.
    Type: Grant
    Filed: October 26, 2004
    Date of Patent: January 15, 2008
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., Mitchell E. Loescher, John R. Adams, Abraham P. Gelbein
  • Patent number: 7314947
    Abstract: A process for the production of dialkyl carbonates from the reaction of alcohol, for example C1-C3 alcohols, with urea is disclosed wherein the water and ammonium carbamates impurities in the feed are removed in a prereactor. The water is reacted with urea in the feed to produce ammonium carbamate which is decomposed along with the ammonium carbamates originally in the feed to ammonia and carbon dioxide. In addition some of the urea is reacted with the alcohol in the first reactor to produce alkyl carbamate which is a precursor to dialkyl carbonate. Dialkyl carbonates are produced in the second reaction zone. The undesired by-product N-alkyl alkyl carbamates are continuously distilled off from the second reaction zone along with ammonia, alcohol and dialkyl carbonates under the steady state reactor operation. N-alkyl alkyl carbamates can be converted to heterocyclic compounds in a third reaction zone to remove as solids from the system.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: January 1, 2008
    Assignee: Catalytic Distillation Technologies
    Inventors: J. Yong Ryu, Abraham P. Gelbein
  • Patent number: 7288668
    Abstract: Diphenyl carbonate is produced by reacting phenol with diethyl carbonate in a series of fixed bed reactors each of which is connected at different position on a distillation column via side draw and return streams. The composition of material in a distillation column varies along the length of the column, which is predictable under a given set of conditions of temperature and pressure, thus withdrawing streams at different stages in the column, allows the reactor receiving the feed from a particular stage to be operated under conditions to maximize the desired reaction, while allowing the unreacted or byproduct to go back into the distillation and be sent to a stage (by the equilibrium of the distillation) where they are favorably treated in a reactor.
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: October 30, 2007
    Assignee: Catalytic Distillation Technologies
    Inventors: J. Yong Ryu, Abraham P. Gelbein
  • Patent number: 7279592
    Abstract: A process for the production of dialkyl carbonates from the reaction of alcohol, for example C1-C3 alcohols, with urea is disclosed wherein the water and ammonium carbamates impurities in the feed are removed in a prereactor. The water is reacted with urea in the feed to produce ammonium carbamate which is decomposed along with the ammonium carbamates originally in the feed to ammonia and carbon dioxide. In addition some of the urea is reacted with the alcohol in the first reactor to produce alkyl carbamate which is a precursor to dialkyl carbonate. Dialkyl carbonates are produced in the second reaction zone. The undesired by-product N-alkyl alkyl carbamates are continuously distilled off from the second reaction zone along with ammonia, alcohol and dialkyl carbonates under the steady state reactor operation. N-alkyl alkyl carbamates can be converted to heterocyclic compounds in a third reaction zone to remove as solids from the system.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: October 9, 2007
    Assignee: Catalytic Distillation Technologies
    Inventors: J. Yong Ryu, Abraham P. Gelbein
  • Patent number: 7250542
    Abstract: A process for the alkylation of alkane with olefin or olefin precursor such as an oligomer of tertiary olefin comprising contacting a liquid system comprising acid catalyst, isoparaffin and olefin in concurrent downflow into contact in a reaction zone with a disperser mesh under conditions of temperature and pressure to react said isoparaffin and said olefin to produce an alkylate product is disclosed. Preferably, the liquid system is maintained at about its boiling point in the reaction zone. Unexpectedly, the olefin oligomers have been found to function as olefin precursors and not as olefins in the reaction. Thus, for example, a cold acid alkylation using an oligomer of isobutene (principally dimer and trimer) with isobutane produces isooctane with the isobutane reacting with the constituent isobutene units of the oligomers on a molar basis. The product isooctane is essentially the same as that produced in the conventional cold acid process.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: July 31, 2007
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., Mitchell E. Loescher, John R. Adams, Abraham P. Gelbein
  • Patent number: 7074951
    Abstract: A process for the production of dialkyl carbonates from the reaction of alcohol, for example C1–C3 alcohols, with urea is disclosed wherein the water and ammonium carbamates impurities in the feed are removed in a prereactor. The water is reacted with urea in the feed to produce ammonium carbamate which is decomposed along with the ammonium carbamates originally in the feed to ammonia and carbon dioxide. In addition some of the urea is reacted with the alcohol in the first reactor to produce alkyl carbamate which is a precursor to dialkyl carbonate. Dialkyl carbonates are produced in the second reaction zone. The undesired by-product N-alkyl alkyl carbamates are continuously distilled off from the second reaction zone along with ammonia, alcohol and dialkyl carbonates under the steady state reactor operation. N-alkyl alkyl carbamates can be converted to heterocyclic compounds in a third reaction zone to remove as solids from the system.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: July 11, 2006
    Inventors: J. Yong Ryu, Abraham P. Gelbein
  • Patent number: 6995296
    Abstract: A process for the alkylation of alkane with olefin or olefin precursor such as an oligomer of tertiary olefin comprising contacting a liquid system comprising acid catalyst, isoparaffin and olefin in concurrent downflow into contact in a reaction zone with a disperser mesh under conditions of temperature and pressure to react said isoparaffin and said olefin to produce an alkylate product is disclosed. Preferably, the liquid system is maintained at about its boiling point in the reaction zone. Unexpectedly, the olefin oligomers have been found to function as olefin precursors and not as olefins in the reaction. Thus, for example, a cold acid alkylation using an oligomer of isobutene (principally dimer and trimer) with isobutane produces isooctane with the isobutane reacting with the constituent isobutene units of the oligomers on a molar basis. The product isooctane is essentially the same as that produced in the conventional cold acid process.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: February 7, 2006
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., Mitchell E. Loescher, John R. Adams, Abraham P. Gelbein