Patents by Inventor Abraham Z. Snyder

Abraham Z. Snyder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230181119
    Abstract: A computing device for use in a system for mapping brain activity of a subject includes a processor. The processor is programmed to select a plurality of measurements of brain activity that is representative of at least one parameter of a brain of the subject during a resting state. Moreover, the processor is programmed to compare at least one data point from each of the measurements with a corresponding data point from a previously acquired data set from at least one other subject. The processor is also programmed to produce at least one map for each of the measurements based on the comparison of the resting state data point and the corresponding previously acquired data point. The processor may also be programmed to categorize the brain activity in a plurality of networks in the brain based on the map.
    Type: Application
    Filed: February 13, 2023
    Publication date: June 15, 2023
    Inventors: Eric Leuthardt, Nicholas Szrama, Carl Hacker, Tim Laumann, Maurizio Corbetta, Abraham Z. Snyder
  • Patent number: 11589826
    Abstract: A computing device for use in a system for mapping brain activity of a subject includes a processor. The processor is programmed to select a plurality of measurements of brain activity that is representative of at least one parameter of a brain of the subject during a resting state. Moreover, the processor is programmed to compare at least one data point from each of the measurements with a corresponding data point from a previously acquired data set from at least one other subject. The processor is also programmed to produce at least one map for each of the measurements based on the comparison of the resting state data point and the corresponding previously acquired data point. The processor may also be programmed to categorize the brain activity in a plurality of networks in the brain based on the map.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: February 28, 2023
    Assignee: Washington University
    Inventors: Eric Leuthardt, Nicholas Szrama, Carl Hacker, Tim Laumann, Maurizio Corbetta, Abraham Z. Snyder
  • Publication number: 20200237316
    Abstract: A computing device for use in a system for mapping brain activity of a subject includes a processor. The processor is programmed to select a plurality of measurements of brain activity that is representative of at least one parameter of a brain of the subject during a resting state. Moreover, the processor is programmed to compare at least one data point from each of the measurements with a corresponding data point from a previously acquired data set from at least one other subject. The processor is also programmed to produce at least one map for each of the measurements based on the comparison of the resting state data point and the corresponding previously acquired data point. The processor may also be programmed to categorize the brain activity in a plurality of networks in the brain based on the map.
    Type: Application
    Filed: April 15, 2019
    Publication date: July 30, 2020
    Applicant: Washington University
    Inventors: Eric Leuthardt, Nicholas Szrama, Carl Hacker, Tim Laumann, Maurizio Corbetta, Abraham Z. Snyder
  • Publication number: 20190239818
    Abstract: A computing device for use in a system for mapping brain activity of a subject includes a processor. The processor is programmed to select a plurality of measurements of brain activity that is representative of at least one parameter of a brain of the subject during a resting state. Moreover, the processor is programmed to compare at least one data point from each of the measurements with a corresponding data point from a previously acquired data set from at least one other subject. The processor is also programmed to produce at least one map for each of the measurements based on the comparison of the resting state data point and the corresponding previously acquired data point. The processor may also be programmed to categorize the brain activity in a plurality of networks in the brain based on the map.
    Type: Application
    Filed: April 15, 2019
    Publication date: August 8, 2019
    Applicant: Washington University
    Inventors: Eric Leuthardt, Nicholas Szrama, Carl Hacker, Tim Laumann, Maurizio Corbetta, Abraham Z. Snyder
  • Patent number: 10258289
    Abstract: A computing device for use in a system for mapping brain activity of a subject includes a processor. The processor is programmed to select a plurality of measurements of brain activity that is representative of at least one parameter of a brain of the subject during a resting state. Moreover, the processor is programmed to compare at least one data point from each of the measurements with a corresponding data point from a previously acquired data set from at least one other subject. The processor is also programmed to produce at least one map for each of the measurements based on the comparison of the resting state data point and the corresponding previously acquired data point. The processor may also be programmed to categorize the brain activity in a plurality of networks in the brain based on the map.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: April 16, 2019
    Assignee: Washington University
    Inventors: Eric Leuthardt, Nicholas Szrama, Carl Hacker, Tim Laumann, Maurizio Corbetta, Abraham Z. Snyder
  • Publication number: 20190015050
    Abstract: A computing device for use in a system for mapping brain activity of a subject includes a processor. The processor is programmed to select a plurality of measurements of brain activity that is representative of at least one parameter of a brain of the subject during a resting state. Moreover, the processor is programmed to compare at least one data point from each of the measurements with a corresponding data point from a previously acquired data set from at least one other subject. The processor is also programmed to produce at least one map for each of the measurements based on the comparison of the resting state data point and the corresponding previously acquired data point. The processor may also be programmed to categorize the brain activity in a plurality of networks in the brain based on the map.
    Type: Application
    Filed: September 20, 2018
    Publication date: January 17, 2019
    Applicant: Washington University
    Inventors: Eric Leuthardt, Nicholas Szrama, Carl Hacker, Tim Laumann, Maurizio Corbetta, Abraham Z. Snyder
  • Patent number: 10092246
    Abstract: A computing device for use in a system for mapping brain activity of a subject includes a processor. The processor is programmed to select a plurality of measurements of brain activity that is representative of at least one parameter of a brain of the subject during a resting state. Moreover, the processor is programmed to compare at least one data point from each of the measurements with a corresponding data point from a previously acquired data set from at least one other subject. The processor is also programmed to produce at least one map for each of the measurements based on the comparison of the resting state data point and the corresponding previously acquired data point. The processor may also be programmed to categorize the brain activity in a plurality of networks in the brain based on the map.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: October 9, 2018
    Assignee: WASHINGTON UNIVERSITY
    Inventors: Eric Leuthardt, Nicholas Szrama, Carl Hacker, Tim Laumann, Maurizio Corbetta, Abraham Z. Snyder
  • Publication number: 20170014066
    Abstract: A method for utilizing an optical system for taskless mapping of brain function includes determining a time series of dynamic light measurements for a plurality of spatially distributed source-detector pairs, receiving the dynamic light measurements over a period of time using the source-detector pairs without dependence on either a task or a change in physiological condition, generating a plurality of temporal correlations between regions of a brain for the light measurements based on the time series of the spatially distributed source-detector pairs and the received dynamic light measurements, producing at least one map of a respective strength of each of a plurality of temporal correlations, producing overlapping source-detector pairs measurements using diffuse optical tomography (DOT) geometries, reconstructing data representative of the dynamic light measurements into an image space using at least one DOT algorithm, and co-registering DOT voxel images obtained by the reconstruction to anatomical informat
    Type: Application
    Filed: September 30, 2016
    Publication date: January 19, 2017
    Inventors: Joseph P. Culver, Brian R. White, Bradley L. Schlaggar, Abraham Z. Snyder, Marcus E. Raichle, Michael D. Fox, Justin L. Vincent
  • Publication number: 20160345911
    Abstract: A computing device for use in a system for mapping brain activity of a subject includes a processor. The processor is programmed to select a plurality of measurements of brain activity that is representative of at least one parameter of a brain of the subject during a resting state. Moreover, the processor is programmed to compare at least one data point from each of the measurements with a corresponding data point from a previously acquired data set from at least one other subject. The processor is also programmed to produce at least one map for each of the measurements based on the comparison of the resting state data point and the corresponding previously acquired data point. The processor may also be programmed to categorize the brain activity in a plurality of networks in the brain based on the map.
    Type: Application
    Filed: August 15, 2016
    Publication date: December 1, 2016
    Inventors: Eric Leuthardt, Nicholas Szrama, Carl Hacker, Tim Laumann, Maurizio Corbetta, Abraham Z. Snyder
  • Patent number: 9480425
    Abstract: A method for utilizing an optical system for mapping brain function includes determining a time series of light intensity measurements for spatially distributed source and detector pairs, receiving light measurements over a period of time, and producing at least one map of a respective strength of each of a plurality of temporal correlations, wherein the temporal correlations are based on the time series of the spatially distributed source and detector pairs and the light measurements.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: November 1, 2016
    Assignee: WASHINGTON UNIVERSITY
    Inventors: Joseph P. Culver, Brian R. White, Bradley L. Schlaggar, Abraham Z. Snyder, Marcus E. Raichle, Michael D. Fox, Justin L. Vincent
  • Patent number: 9480402
    Abstract: A computing device for use in a system for mapping brain activity of a subject includes a processor. The processor is programmed to select a plurality of measurements of brain activity that is representative of at least one parameter of a brain of the subject during a resting state. Moreover, the processor is programmed to compare at least one data point from each of the measurements with a corresponding data point from a previously acquired data set from at least one other subject. The processor is also programmed to produce at least one map for each of the measurements based on the comparison of the resting state data point and the corresponding previously acquired data point. The processor may also be programmed to categorize the brain activity in a plurality of networks in the brain based on the map.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: November 1, 2016
    Assignee: Washington University
    Inventors: Eric Leuthardt, Nicholas Szrama, Carl Hacker, Tim Laumann, Maurizio Corbetta, Abraham Z. Snyder
  • Publication number: 20090292210
    Abstract: A method for utilizing an optical system for mapping brain function includes determining a time series of light intensity measurements for spatially distributed source and detector pairs, receiving light measurements over a period of time, and producing at least one map of a respective strength of each of a plurality of temporal correlations, wherein the temporal correlations are based on the time series of the spatially distributed source and detector pairs and the light measurements.
    Type: Application
    Filed: April 17, 2009
    Publication date: November 26, 2009
    Applicant: WASHINGTON UNIVERSITY IN ST. LOUIS
    Inventors: Joseph P. Culver, Brian R. White, Bradley L. Schlaggar, Abraham Z. Snyder, Marcus E. Raichle, Michael D. Fox, Justin L. Vincent