Patents by Inventor Achala Bhuwalka

Achala Bhuwalka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11569231
    Abstract: Techniques are disclosed for non-planar transistors having varying channel widths (Wsi). In some instances, the resulting structure has a fin (or nanowires, nanoribbons, or nanosheets) comprising a first channel region and a second channel region, with a source or drain region between the first channel region and the second channel region. The widths of the respective channel regions are independent of each other, e.g., a first width of the first channel region is different from a second width of the second channel region. The variation in width of a given fin structure may vary in a symmetric fashion or an asymmetric fashion. In an embodiment, a spacer-based forming approach is utilized that allows for abrupt changes in width along a given fin. Sub-resolution fin dimensions are achievable as well.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: January 31, 2023
    Assignee: Intel Corporation
    Inventors: Stephen D Snyder, Leonard Guler, Richard Schenker, Michael K Harper, Sam Sivakumar, Urusa Alaan, Stephanie A Bojarski, Achala Bhuwalka
  • Publication number: 20200295002
    Abstract: Techniques are disclosed for non-planar transistors having varying channel widths (Wsi). In some instances, the resulting structure has a fin (or nanowires, nanoribbons, or nanosheets) comprising a first channel region and a second channel region, with a source or drain region between the first channel region and the second channel region. The widths of the respective channel regions are independent of each other, e.g., a first width of the first channel region is different from a second width of the second channel region. The variation in width of a given fin structure may vary in a symmetric fashion or an asymmetric fashion. In an embodiment, a spacer-based forming approach is utilized that allows for abrupt changes in width along a given fin. Sub-resolution fin dimensions are achievable as well.
    Type: Application
    Filed: March 15, 2019
    Publication date: September 17, 2020
    Applicant: Intel Corporation
    Inventors: Stephen D. Snyder, Leonard Guler, Richard Schenker, Michael K. Harper, Sam Sivakumar, Urusa Alaan, Stephanie A. Bojarski, Achala Bhuwalka