Patents by Inventor Adalbert Hanssen

Adalbert Hanssen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240053622
    Abstract: A spectacle lens which has permanent markings is mounted on a mounting, in particular a suction mounting. The apparent location of the permanent markings is detected on the spectacle lens with a detection device. Additionally, the spectacle lens is illuminated eccentrically with respect to an optical axis of the detection device using eccentric light sources. Reflections from the lights sources on the spectacle lens are likewise detected. On the basis of the detected reflections and the apparent location of the permanent markings, the position and/or orientation of the mounted spectacle lens are determined.
    Type: Application
    Filed: October 25, 2023
    Publication date: February 15, 2024
    Inventors: Adalbert Hanßen, Elmar Rothe
  • Patent number: 11835795
    Abstract: A spectacle lens with has permanent markings is mounted on a mounting, in particular a suction mounting. The apparent location of the permanent markings is detected on the spectacle lens with a detection device. Additionally, the spectacle lens is illuminated eccentrically with respect to an optical axis of the detection device using eccentric light sources. Reflections from the lights sources on the spectacle lens are likewise detected. On the basis of the detected reflections and the apparent location of the permanent markings, the position and/or orientation of the mounted spectacle lens are determined.
    Type: Grant
    Filed: February 16, 2020
    Date of Patent: December 5, 2023
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Adalbert Hanßen, Elmar Rothe
  • Publication number: 20200183193
    Abstract: A spectacle lens with has permanent markings is mounted on a mounting, in particular a suction mounting. The apparent location of the permanent markings is detected on the spectacle lens with a detection device. Additionally, the spectacle lens is illuminated eccentrically with respect to an optical axis of the detection device using eccentric light sources. Reflections from the lights sources on the spectacle lens are likewise detected. On the basis of the detected reflections and the apparent location of the permanent markings, the position and/or orientation of the mounted spectacle lens are determined.
    Type: Application
    Filed: February 16, 2020
    Publication date: June 11, 2020
    Inventors: Adalbert Hanßen, Elmar Rothe
  • Patent number: 9797804
    Abstract: The spatial structure of an optical element is determined. The optical element has a first optically active surface and a second optically active surface. The optical element is arranged in a holding device. The position of a point (P) on the first optically active surface and the position of a point (P?) on the second optically active surface are referenced in a coordinate system fixed to the holding device. The topography of the first optically active surface is determined in a coordinate system referenced to the holding device by the position of point (P) and the spatial structure of the optical element is calculated from the topography of the first optically active surface and from a data set as to the topography of the second optically active surface. The data set is referenced to the fixed coordinate system of the holding device by the position of point (P?).
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: October 24, 2017
    Assignees: Carl Zeiss Vision International GmbH, Carl Zeiss AG
    Inventors: Carsten Glasenapp, Matthias Hornauer, Adalbert Hanssen, Yvonne Schleitzer, Lars Omlor
  • Patent number: 9778484
    Abstract: An optical element has a substrate body made from transparent plastic and a coating having multiple layers. The coating includes a hard lacquer layer adjoining the substrate. The coating has a diffusivity ensuring the absorption of water molecules passing through the coating in the substrate and the release of water molecules from the substrate through the coating from an air atmosphere on that side of the coating facing away from the substrate with a flow density which, proceeding from the equilibrium state of the quantity of water molecules absorbed in the substrate in an air atmosphere at 23° C. and 50% relative humidity, brings the setting of the equilibrium state of the quantity of water molecules absorbed in the substrate in an air atmosphere at 40° C. and 95% relative humidity within an interval not more than 10 h longer than for setting this equilibrium under corresponding conditions with an identical uncoated substrate.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: October 3, 2017
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Norbert Hugenberg, Markus Haidl, Bernhard von Blanckenhagen, Lothar Holz, Stefan Kraus, Frank Macionczyk, Michael Krause, Erwin Green, Karl-Heinz Winter, Thomas Gloege, Silvia Faul, Anja Petereit, Bin Peng, Joerg Puetz, Patrick Kiefer, Adalbert Hanssen, Michael Krieger, Andreas Neuffer, Marc Stroisch
  • Publication number: 20160054196
    Abstract: The spatial structure of an optical element is determined. The optical element has a first optically active surface and a second optically active surface. The optical element is arranged in a holding device. The position of a point (P) on the first optically active surface and the position of a point (P?) on the second optically active surface are referenced in a coordinate system fixed to the holding device. The topography of the first optically active surface is determined in a coordinate system referenced to the holding device by the position of point (P) and the spatial structure of the optical element is calculated from the topography of the first optically active surface and from a data set as to the topography of the second optically active surface. The data set is referenced to the fixed coordinate system of the holding device by the position of point (P?).
    Type: Application
    Filed: November 2, 2015
    Publication date: February 25, 2016
    Inventors: Carsten Glasenapp, Matthias Hornauer, Adalbert Hanssen, Yvonne Schleitzer, Lars Omlor
  • Publication number: 20140327876
    Abstract: An optical element has a substrate body made from transparent plastic and a coating having multiple layers. The coating includes a hard lacquer layer adjoining the substrate. The coating has a diffusivity ensuring the absorption of water molecules passing through the coating in the substrate and the release of water molecules from the substrate through the coating from an air atmosphere on that side of the coating facing away from the substrate with a flow density which, proceeding from the equilibrium state of the quantity of water molecules absorbed in the substrate in an air atmosphere at 23° C. and 50% relative humidity, brings the setting of the equilibrium state of the quantity of water molecules absorbed in the substrate in an air atmosphere at 40° C. and 95% relative humidity within an interval not more than 10 h longer than for setting this equilibrium under corresponding conditions with an identical uncoated substrate.
    Type: Application
    Filed: May 6, 2014
    Publication date: November 6, 2014
    Applicant: Carl Zeiss Vision International GmbH
    Inventors: Norbert Hugenberg, Markus Haidl, Bernhard von Blanckenhagen, Lothar Holz, Stefan Kraus, Frank Macionczyk, Michael Krause, Erwin Green, Karl-Heinz Winter, Thomas Gloege, Silvia Faul, Anja Petereit, Bin Peng, Joerg Puetz, Patrick Kiefer, Adalbert Hanssen, Michael Krieger, Andreas Neuffer, Marc Stroisch
  • Patent number: 8823926
    Abstract: A method and an apparatus serve for visualizing a signature mark on a spectacle lens. In order to identify the signature mark, an illumination light beam is directed onto the spectacle lens, which impinges on the spectacle lens, after impinging on the spectacle lens is reflected at a retroreflector, impinges once again on the spectacle lens, and finally is passed as an observation light beam to a camera. A reflection region of the illumination light beam on the reflector is varied by means of a moved first optical element.
    Type: Grant
    Filed: November 23, 2012
    Date of Patent: September 2, 2014
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Adalbert Hanssen, Matthias Hornauer
  • Patent number: 8773651
    Abstract: A method and an apparatus serve for visualizing a signature mark on a spectacle lens. In order to identify the signature mark, an illumination light beam is directed onto the spectacle lens, which impinges on the spectacle lens, after impinging on the spectacle lens is reflected at a retroreflector, impinges once again on the spectacle lens, and finally is passed as an observation light beam to a camera. A reflection region of the illumination light beam on the reflector is varied by means of a moved first optical element.
    Type: Grant
    Filed: November 23, 2012
    Date of Patent: July 8, 2014
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Adalbert Hanssen, Matthias Hornauer
  • Patent number: 8323539
    Abstract: The invention concerns a process and an apparatus for chip-cutting plastic material optical lenses. The point of chip-cutting on the lens is cooled. The chip-cutting is effected by means of lathing. The point of chip-cutting is locally cooled down to a temperature at which the plastic material becomes brittle such that the chip breaks into bits.
    Type: Grant
    Filed: February 2, 2005
    Date of Patent: December 4, 2012
    Assignee: Carl Zeiss Vision GmbH
    Inventor: Adalbert Hanssen
  • Patent number: 7728962
    Abstract: A method and an apparatus for making visible a mark on a spectacle lens are disclosed. An illumination light beam is directed to the spectacle lens. The illumination light beam runs through the spectacle lens and, after having run through the spectacle lens, is reflected on a reflector configured as a retroreflector, then runs again through the spectacle lens, and is finally fed to a camera as an observation light beam. The reflector is moved. Further, a measurement light beam is directed to said spectacle lens and fed to a sensor for measuring a physical property of the spectacle lens. The measurement light beam is generated by a first light source and the illumination light beam is generated by a second light source. The first and the second light sources are physically distinct units.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: June 1, 2010
    Assignee: Carl Zeiss Vision GmbH
    Inventors: Matthias Hornauer, Adalbert Hanssen
  • Patent number: 7423741
    Abstract: A method and an apparatus for making visible a mark on a spectacle lens are disclosed. An illumination light beam is directed to the spectacle lens. The illumination light beam runs through the spectacle lens and, after having run through the spectacle lens, is reflected on a reflector configured as a retroreflector, then runs again through the spectacle lens, and is finally fed to a camera as an observation light beam. The reflector is moved. Further, a measurement light beam is directed to said spectacle lens and fed to a sensor for measuring a physical property of the spectacle lens. The measurement light beam is generated by a first light source and the illumination light beam is generated by a second light source. The first and the second light sources are physically distinct units.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: September 9, 2008
    Assignee: Carl Zeiss Vision GmbH
    Inventors: Matthias Hornauer, Adalbert Hanssen
  • Publication number: 20060192944
    Abstract: A method and an apparatus for making visible a mark on a spectacle lens are disclosed. An illumination light beam is directed to the spectacle lens. The illumination light beam runs through the spectacle lens and, after having run through the spectacle lens, is reflected on a reflector configured as a retroreflector, then runs again through the spectacle lens, and is finally fed to a camera as an observation light beam. The reflector is moved. Further, a measurement light beam is directed to said spectacle lens and fed to a sensor for measuring a physical property of the spectacle lens. The measurement light beam is generated by a first light source and the illumination light beam is generated by a second light source. The first and the second light sources are physically distinct units.
    Type: Application
    Filed: January 13, 2006
    Publication date: August 31, 2006
    Inventors: Matthias Hornauer, Adalbert Hanssen
  • Publication number: 20060192945
    Abstract: A method and an apparatus for making visible a mark on a spectacle lens are disclosed. An illumination light beam is directed to the spectacle lens. The illumination light beam runs through the spectacle lens and, after having run through the spectacle lens, is reflected on a reflector configured as a retroreflector, then runs again through the spectacle lens, and is finally fed to a camera as an observation light beam. The reflector is moved. Further, a measurement light beam is directed to said spectacle lens and fed to a sensor for measuring a physical property of the spectacle lens. The measurement light beam is generated by a first light source and the illumination light beam is generated by a second light source. The first and the second light sources are physically distinct units.
    Type: Application
    Filed: January 13, 2006
    Publication date: August 31, 2006
    Inventors: Matthias Hornauer, Adalbert Hanssen
  • Publication number: 20050189666
    Abstract: The invention concerns a process and an apparatus for chip-cutting plastic material optical lenses. The point of chip-cutting on the lens is cooled. The chip-cutting is effected by means of lathing. The point of chip-cutting is locally cooled down to a temperature at which the plastic material becomes brittle such that the chip breaks into bits.
    Type: Application
    Filed: February 2, 2005
    Publication date: September 1, 2005
    Inventor: Adalbert Hanssen
  • Patent number: 6089713
    Abstract: A spectacle lens has a spherical or rotationally symmetrical, aspheric front side and a back side prescription surface. All individual requirements of the prescription for spectacles, consisting of spherical, astigmatic and prismatic power and their distribution on the x and y axes on the spectacle lens surface, are fulfilled by the prescription surface. The back surface of the spectacle lens is a multifocal surface without point symmetry and/or axial symmetry. A process that produces spectacle lenses with multifocal power starts with variants of a first or of a few spectacle lens(es) that originate according to prior art design considerations. The semi-finished lenses have spherical or aspheric, rotationally symmetrical, convex front surfaces, with about 10 different radii. The whole matching of individual required dioptric power takes place on a free-form back surface of the spectacle lens facing the eye of the wearer.
    Type: Grant
    Filed: January 16, 1998
    Date of Patent: July 18, 2000
    Assignee: Carl-Zeiss-Stiftung
    Inventors: Albrecht Hof, Adalbert Hanssen
  • Patent number: 5379107
    Abstract: In a process and apparatus for measuring object topographies by means of projected fringe patterns, to enlarge the region of certainty, different periodicities are evaluated. Calibration of the measurement apparatus is carried out in at least two parallel planes, situated in the forward and in the rearward regions of the measurement volume. Corrected phase values are first calculated from the phase measurement values of the measurement object. By combination of the phase measurement values relating to the pattern of long periodicity and of the pattern of short periodicity, the fringe order of the phase values relating to short periodicity is calculated. By interpolation of the correction values between the two planes in which the reference measurements were carried out, the measurement process and a corresponding measurment apparatus provide highly accurate measurement values, with simultaneously reduced requirements on the accuracy of mechanical and/or optical adjustment.
    Type: Grant
    Filed: May 14, 1993
    Date of Patent: January 3, 1995
    Assignee: Carl-Zeiss-Stiftung
    Inventors: Adalbert Hanssen, Albrecht Hof
  • Patent number: 5307151
    Abstract: A single projector is used to project a grating pattern on the surface of the object being measured, and the grating pattern is recorded simultaneously by two cameras from two different directions relative to the direction of projection. Both cameras record images of the same object areas. The fringe phases of the image patterns recorded by each of the two cameras are computed separately; and the object coordinates, which are computed from the combination of the computed fringe phases of both cameras, are unambiguous within a large measured range.
    Type: Grant
    Filed: July 30, 1992
    Date of Patent: April 26, 1994
    Assignee: Carl-Zeiss-Stiftung
    Inventors: Albrecht Hof, Adalbert Hanssen
  • Patent number: 4624537
    Abstract: The invention is directed to an arrangement for controlling a movement and includes an arrangement wherein the an actuating manipulator provides an output signal proportional to displacement. The arrangement includes a circuit which multiplies the output signal by a factor F which is dependent upon the speed of the actuation. In this way, the manipulator is suitable not only for controlling very fine sensitive positioning; but it also allows a fast displacement of the driven part over large distances. With manipulators for controlling movements in more than one dimension, output signals are multiplied by the same factor for all coordinates in order that directional accuracy of the movement is guaranteed at all speeds. A track ball can be utilized as a manipulator, for example. The arrangement of the invention is applicable for manually positioning microscope tables, coordinate measuring machines and ophthalmic apparatus.
    Type: Grant
    Filed: August 21, 1984
    Date of Patent: November 25, 1986
    Assignee: Carl-Zeiss-Stiftung
    Inventors: Adalbert Hanssen, Jurgen Schwarz