Patents by Inventor Adam Amali

Adam Amali has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240047517
    Abstract: A power semiconductor device includes: trench gate structures in an active cell region of a semiconductor substrate and extending into an inactive cell region of the semiconductor substrate that adjoins the active cell region; an electrically insulating material covering the trench gate structures; first contact openings in the electrically insulating material between adjacent trench gate structures in the active cell region; second contact openings in the electrically insulating material vertically aligned with the trench gate structures in the inactive cell region; first counter-doped regions between the adjacent trench gate structures in the active cell region and vertically aligned with the first contact openings; second counter-doped regions underneath the trench gate structures in the inactive cell region and vertically aligned with the second contact openings; first contacts in the first contact openings; and second contacts in the second contact openings.
    Type: Application
    Filed: August 5, 2022
    Publication date: February 8, 2024
    Inventors: Robert Haase, Adam Amali, Timothy Henson, Ling Ma, Kishore Lakhmichand Malani
  • Patent number: 11296218
    Abstract: A semiconductor device includes a semiconductor body having first and second opposing surfaces, an active area including active transistor cells, and an edge termination region laterally surrounding the active area. Each active transistor cell includes a mesa and a columnar trench having a field plate. The edge termination region includes inactive cells each including a columnar termination trench having a field plate, and a termination mesa including a drift region of a first conductivity type. The edge termination region includes a transition region laterally surrounding the active region and an outer termination region laterally surrounding the transition region. In the transition region, the termination mesa includes a body region of a second conductivity type arranged on the drift region. In the outer termination region, the drift region extends to the first surface. A buried doped region of the edge termination region is positioned in the transition and outer termination regions.
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: April 5, 2022
    Assignees: Infineon Technologies Austria AG, Infineon Technologies Americas Corp.
    Inventors: Ralf Siemieniec, Adam Amali, Michael Hutzler, Laszlo Juhasz, David Laforet, Cedric Ouvrard, Li Juin Yip
  • Patent number: 10868173
    Abstract: A semiconductor device includes a semiconductor substrate having drift and body regions. The drift region includes upper and lower drift regions. An active area includes a plurality of spicular trenches extending through the body region and into the drift region. Each spicular trench in the active area has a lower end which together define a lower end of the upper drift region extending towards a first side and a lower drift region extending from the lower end of the upper drift region towards a second side. The edge termination area includes spicular termination trenches extending at least into the upper drift region. A surface doping region arranged in the upper drift region in the edge termination area extends to the first side, is spaced apart from the lower end of the upper drift region, and has a net doping concentration lower than that of the upper drift region.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: December 15, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Cedric Ouvrard, Adam Amali, Oliver Blank, Michael Hutzler, David Laforet, Harsh Naik, Ralf Siemieniec, Li Juin Yip
  • Publication number: 20200365724
    Abstract: A semiconductor device includes a semiconductor body having first and second opposing surfaces, an active area including active transistor cells, and an edge termination region laterally surrounding the active area. Each active transistor cell includes a mesa and a columnar trench having a field plate. The edge termination region includes inactive cells each including a columnar termination trench having a field plate, and a termination mesa including a drift region of a first conductivity type. The edge termination region includes a transition region laterally surrounding the active region and an outer termination region laterally surrounding the transition region. In the transition region, the termination mesa includes a body region of a second conductivity type arranged on the drift region. In the outer termination region, the drift region extends to the first surface. A buried doped region of the edge termination region is positioned in the transition and outer termination regions.
    Type: Application
    Filed: May 13, 2020
    Publication date: November 19, 2020
    Inventors: Ralf Siemieniec, Adam Amali, Michael Hutzler, Laszlo Juhasz, David Laforet, Cedric Ouvrard, Li Juin Yip
  • Publication number: 20200328303
    Abstract: A semiconductor device includes a semiconductor substrate having drift and body regions. The drift region includes upper and lower drift regions. An active area includes a plurality of spicular trenches extending through the body region and into the drift region. Each spicular trench in the active area has a lower end which together define a lower end of the upper drift region extending towards a first side and a lower drift region extending from the lower end of the upper drift region towards a second side. The edge termination area includes spicular termination trenches extending at least into the upper drift region. A surface doping region arranged in the upper drift region in the edge termination area extends to the first side, is spaced apart from the lower end of the upper drift region, and has a net doping concentration lower than that of the upper drift region.
    Type: Application
    Filed: June 25, 2020
    Publication date: October 15, 2020
    Inventors: Cedric Ouvrard, Adam Amali, Oliver Blank, Michael Hutzler, David Laforet, Harsh Naik, Ralf Siemieniec, Li Juin Yip
  • Patent number: 10727331
    Abstract: A semiconductor device includes a semiconductor substrate having drift and body regions. The drift region includes upper and lower drift regions. An active area includes a plurality of spicular trenches extending through the body region and into the drift region. Each spicular trench in the active area has a lower end which together define a lower end of the upper drift region extending towards a first side and a lower drift region extending from the lower end of the upper drift region towards a second side. The edge termination area includes spicular termination trenches extending at least into the upper drift region. A surface doping region arranged in the upper drift region in the edge termination area extends to the first side, is spaced apart from the lower end of the upper drift region, and has a net doping concentration lower than that of the upper drift region.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: July 28, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Cedric Ouvrard, Adam Amali, Oliver Blank, Michael Hutzler, David Laforet, Harsh Naik, Ralf Siemieniec, Li Juin Yip
  • Publication number: 20190006513
    Abstract: A semiconductor device includes a semiconductor substrate having drift and body regions. The drift region includes upper and lower drift regions. An active area includes a plurality of spicular trenches extending through the body region and into the drift region. Each spicular trench in the active area has a lower end which together define a lower end of the upper drift region extending towards a first side and a lower drift region extending from the lower end of the upper drift region towards a second side. The edge termination area includes spicular termination trenches extending at least into the upper drift region. A surface doping region arranged in the upper drift region in the edge termination area extends to the first side, is spaced apart from the lower end of the upper drift region, and has a net doping concentration lower than that of the upper drift region.
    Type: Application
    Filed: June 29, 2018
    Publication date: January 3, 2019
    Inventors: Cedric Ouvrard, Adam Amali, Oliver Blank, Michael Hutzler, David Laforet, Harsh Naik, Ralf Siemieniec, Li Juin Yip
  • Patent number: 10141415
    Abstract: A semiconductor device includes a gate trench in a semiconductor substrate, a source trench in the semiconductor substrate, the source trench having a first portion and a second portion under the first portion, where the first portion of the source trench is wider than the gate trench, and extends to a depth of the gate trench. The semiconductor device also includes a gate electrode and a gate trench dielectric liner in the gate trench, and a conductive filler and a source trench dielectric liner in the source trench. The semiconductor device further includes a source region between the gate trench and the source trench, a base region between the gate trench and the source trench, and a source contact coupled to the source region and the base region.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: November 27, 2018
    Assignee: Infineon Technologies Americas Corp.
    Inventors: Adam Amali, Ling Ma
  • Patent number: 9966464
    Abstract: A semiconductor structure is disclosed. The semiconductor structure includes a source trench in a drift region, the source trench having a source trench dielectric liner and a source trench conductive filler surrounded by the source trench dielectric liner, a source region in a body region over the drift region. The semiconductor structure also includes a patterned source trench dielectric cap forming an insulated portion and an exposed portion of the source trench conductive filler, and a source contact layer coupling the source region to the exposed portion of the source trench conductive filler, the insulated portion of the source trench conductive filler increasing resistance between the source contact layer and the source trench conductive filler under the patterned source trench dielectric cap. The source trench is a serpentine source trench having a plurality of parallel portions connected by a plurality of curved portions.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: May 8, 2018
    Assignee: Infineon Technologies Americas Corp.
    Inventors: Kapil Kelkar, Timothy D. Henson, Ling Ma, Mary Bigglestone, Adam Amali, Hugo Burke, Robert Haase
  • Publication number: 20170200799
    Abstract: A semiconductor device includes a gate trench in a semiconductor substrate, a source trench in the semiconductor substrate, the source trench having a first portion and a second portion under the first portion, where the first portion of the source trench is wider than the gate trench, and extends to a depth of the gate trench. The semiconductor device also includes a gate electrode and a gate trench dielectric liner in the gate trench, and a conductive filler and a source trench dielectric liner in the source trench. The semiconductor device further includes a source region between the gate trench and the source trench, a base region between the gate trench and the source trench, and a source contact coupled to the source region and the base region.
    Type: Application
    Filed: January 12, 2016
    Publication date: July 13, 2017
    Inventors: Adam Amali, Ling Ma
  • Publication number: 20170186861
    Abstract: A semiconductor structure is disclosed. The semiconductor structure includes a source trench in a drift region, the source trench having a source trench dielectric liner and a source trench conductive filler surrounded by the source trench dielectric liner, a source region in a body region over the drift region. The semiconductor structure also includes a patterned source trench dielectric cap forming an insulated portion and an exposed portion of the source trench conductive filler, and a source contact layer coupling the source region to the exposed portion of the source trench conductive filler, the insulated portion of the source trench conductive filler increasing resistance between the source contact layer and the source trench conductive filler under the patterned source trench dielectric cap. The source trench is a serpentine source trench having a plurality of parallel portions connected by a plurality of curved portions.
    Type: Application
    Filed: March 13, 2017
    Publication date: June 29, 2017
    Inventors: Kapil Kelkar, Timothy D. Henson, Ling Ma, Mary Bigglestone, Adam Amali, Hugo Burke, Robert Haase
  • Patent number: 9627328
    Abstract: A semiconductor structure is disclosed. The semiconductor structure includes a source trench in a drift region, the source trench having a source trench dielectric liner and a source trench conductive filler surrounded by the source trench dielectric liner, a source region in a body region over the drift region. The semiconductor structure also includes a patterned source trench dielectric cap forming an insulated portion and an exposed portion of the source trench conductive filler, and a source contact layer coupling the source region to the exposed portion of the source trench conductive filler, the insulated portion of the source trench conductive filler increasing resistance between the source contact layer and the source trench conductive filler under the patterned source trench dielectric cap. The source trench is a serpentine source trench having a plurality of parallel portions connected by a plurality of curved portions.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: April 18, 2017
    Assignee: Infineon Technologies Americas Corp.
    Inventors: Kapil Kelkar, Timothy D. Henson, Ling Ma, Mary Bigglestone, Adam Amali, Hugo Burke, Robert Haase
  • Patent number: 9620583
    Abstract: A power semiconductor device is disclosed. The power semiconductor device includes a source region in a body region, a gate trench adjacent to the source region, and a source trench electrically coupled to the source region. The source trench includes a source trench conductive filler surrounded by a source trench dielectric liner, and extends into a drift region. The power semiconductor device includes a source trench implant below the source trench and a drain region below the drift region, where the source trench implant has a conductivity type opposite that of the drift region. The power semiconductor device may also include a termination trench adjacent to the source trench, where the termination trench includes a termination trench conductive filler surrounded by a termination trench dielectric liner. The power semiconductor device may also include a termination trench implant below the termination trench.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: April 11, 2017
    Assignee: Infineon Technologies Americas Corp.
    Inventors: Kapil Kelkar, Timothy D. Henson, Ling Ma, Mary Bigglestone, Adam Amali, Hugo Burke, Robert Haase
  • Publication number: 20160104766
    Abstract: A power semiconductor device is disclosed. The power semiconductor device includes a source region in a body region, a gate trench adjacent to the source region, and a source trench electrically coupled to the source region. The source trench includes a source trench conductive filler surrounded by a source trench dielectric liner, and extends into a drift region. The power semiconductor device includes a source trench implant below the source trench and a drain region below the drift region, where the source trench implant has a conductivity type opposite that of the drift region. The power semiconductor device may also include a termination trench adjacent to the source trench, where the termination trench includes a termination trench conductive filler surrounded by a termination trench dielectric liner. The power semiconductor device may also include a termination trench implant below the termination trench.
    Type: Application
    Filed: September 16, 2015
    Publication date: April 14, 2016
    Inventors: Kapil Kelkar, Timothy D. Henson, Ling Ma, Mary Bigglestone, Adam Amali, Hugo Burke, Robert Haase
  • Publication number: 20160104773
    Abstract: A semiconductor structure is disclosed. The semiconductor structure includes a source trench in a drift region, the source trench having a source trench dielectric liner and a source trench conductive filler surrounded by the source trench dielectric liner, a source region in a body region over the drift region. The semiconductor structure also includes a patterned source trench dielectric cap forming an insulated portion and an exposed portion of the source trench conductive filler, and a source contact layer coupling the source region to the exposed portion of the source trench conductive filler, the insulated portion of the source trench conductive filler increasing resistance between the source contact layer and the source trench conductive filler under the patterned source trench dielectric cap. The source trench is a serpentine source trench having a plurality of parallel portions connected by a plurality of curved portions.
    Type: Application
    Filed: September 30, 2015
    Publication date: April 14, 2016
    Inventors: Kapil Kelkar, Timothy D. Henson, Ling Ma, Mary Bigglestone, Adam Amali, Hugo Burke, Robert Haase
  • Patent number: 7557395
    Abstract: A trench power semiconductor device including a recessed termination structure.
    Type: Grant
    Filed: January 27, 2004
    Date of Patent: July 7, 2009
    Assignee: International Rectifier Corporation
    Inventors: Ling Ma, Adam Amali, Siddharth Kiyawat, Ashita Mirchandani, Donald He, Naresh Thapar, Ritu Sodhi, Kyle Spring, Daniel Kinzer
  • Publication number: 20080061365
    Abstract: A trench type power MOSgated device has a plurality of spaced trenches lined with oxide and filled with conductive polysilicon. The tops of the polysilicon fillers are below the top silicon surface and are capped with a deposited oxide the top of which is flush with the top of the silicon. Source regions of short lateral extent extend into the trench walls to a depth below the top of the polysilicon. A trench termination is formed having an insulation oxide liner covered by a polysilicon layer, covered in turn by a deposited oxide.
    Type: Application
    Filed: November 5, 2007
    Publication date: March 13, 2008
    Inventors: Adam Amali, Naresh Thapar
  • Publication number: 20070040215
    Abstract: A power semiconductor device which includes a plurality of gate trenches and a perimeter trench intersecting the gate trenches.
    Type: Application
    Filed: August 14, 2006
    Publication date: February 22, 2007
    Inventors: Ling Ma, Adam Amali, Russell Turner
  • Publication number: 20070018241
    Abstract: A method of fabricating a power semiconductor device in which contact trenches are formed prior to forming the gate trenches.
    Type: Application
    Filed: June 5, 2006
    Publication date: January 25, 2007
    Inventor: Adam Amali
  • Patent number: RE41719
    Abstract: A driver stage consisting of an N channel FET and a P channel FET are mounted in the same package as the main power FET. The power FET is mounted on a lead frame and the driver FETs are mounted variously on a separate pad of the lead frame or on the main FET or on the lead frame terminals. All electrodes are interconnected within the package by mounting on common conductive surfaces or by wire bonding. The drivers are connected to define either an inverting or non-inverting drive.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: September 21, 2010
    Assignee: International Rectifier Corporation
    Inventors: Daniel Kinzer, Tim Sammon, Mark Pavier, Adam Amali