Patents by Inventor Adam Douglas Greengard

Adam Douglas Greengard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230418071
    Abstract: A waveguide includes a waveguide body including an optically transmissive material having a refractive index different from a surrounding medium and defining an output surface. The waveguide body is configured to propagate light by total internal reflection in one or more directions substantially tangential to the output surface. The waveguide includes one or more diffractive optical elements (DOEs), each configured to change its diffraction efficiency in response to a respective stimulus, and a DOE driver configured to provide the stimuli to each of the DOEs independently.
    Type: Application
    Filed: April 24, 2023
    Publication date: December 28, 2023
    Inventors: Juan Russo, Adam Douglas Greengard
  • Publication number: 20230393402
    Abstract: The present application discloses examples of various apparatuses and systems that can be utilized for augmented reality. According to one example, a wearable device that can optionally comprise: a frame configured for wearing by a user; one or more optical elements mounted on the frame; an array having a plurality of light emitting diodes coupled to the one or more optical elements, wherein the one or more optical elements and the array are mounted within a field of view of the user when the frame is worn by the user; and additional onboard electronic components carried by the frame including at least a battery that is configured to provide for electrically powered operation of the array.
    Type: Application
    Filed: August 17, 2023
    Publication date: December 7, 2023
    Inventors: Robert Matthew Bates, Ilteris Canberk, Brandon Carrillo, David G. Fliszar, Adam Douglas Greengard, Kenneth Kubala, David Meisenholder, Jonathan M. Rodriguez, II, Amit Singh, Samuel Thompson
  • Patent number: 11774760
    Abstract: The present application discloses examples of various apparatuses and systems that can be utilized for augmented reality. According to one example, a wearable device that can optionally comprise: a frame configured for wearing by a user; one or more optical elements mounted on the frame; an array having a plurality of light emitting diodes coupled to the one or more optical elements, wherein the one or more optical elements and the array are mounted within a field of view of the user when the frame is worn by the user; and additional onboard electronic components carried by the frame including at least a battery that is configured to provide for electrically powered operation of the array.
    Type: Grant
    Filed: April 12, 2022
    Date of Patent: October 3, 2023
    Assignee: Snap Inc.
    Inventors: Robert Matthew Bates, Ilteris Canberk, Brandon Carrillo, David G. Fliszar, Adam Douglas Greengard, Kenneth Kubala, David Meisenholder, Jonathan M Rodriguez, II, Amit Singh, Samuel Thompson
  • Publication number: 20220404595
    Abstract: A projection lens can include four lens elements, each lens element being formed from glass and including spherical or planar incident and exiting surfaces. Compared to a projection lens that uses three lens elements, the four-element projection lens has relaxed manufactured and alignment tolerances. Unlike a projection lens that uses one or more plastic elements or uses aspherical surfaces, the all-glass projection lens can be manufactured using relatively fast and inexpensive grinding and polishing techniques. One or two of the glass lens elements can optionally be formed symmetrically, so as to be reversible. One glass element can optionally be plano-convex. A right-angle prism can direct light from a video display into the four glass elements. An achromatic prism can angularly divert the optical axis by about eight degrees and can direct light out of the four glass elements into a near-eye waveguide.
    Type: Application
    Filed: July 1, 2022
    Publication date: December 22, 2022
    Inventors: Robert Matthew Bates, Adam Douglas Greengard
  • Publication number: 20220244544
    Abstract: The present application discloses examples of various apparatuses and systems that can be utilized for augmented reality. According to one example, a wearable device that can optionally comprise: a frame configured for wearing by a user; one or more optical elements mounted on the frame; an array having a plurality of light emitting diodes coupled to the one or more optical elements, wherein the one or more optical elements and the array are mounted within a field of view of the user when the frame is worn by the user; and additional onboard electronic components carried by the frame including at least a battery that is configured to provide for electrically powered operation of the array.
    Type: Application
    Filed: April 12, 2022
    Publication date: August 4, 2022
    Inventors: Robert Matthew Bates, Ilteris Kaan Canberk, Brandon Carrillo, David G. Fliszar, Adam Douglas Greengard, Kenneth Kubala, David Meisenholder, Jonathan M Rodriguez, II, Amit Singh, Samuel Thompson
  • Patent number: 11378786
    Abstract: A projection lens can include four lens elements, each lens element being formed from glass and including spherical or planar incident and exiting surfaces. Compared to a projection lens that uses three lens elements, the four-element projection lens has relaxed manufactured and alignment tolerances. Unlike a projection lens that uses one or more plastic elements or uses aspherical surfaces, the all-glass projection lens can be manufactured using relatively fast and inexpensive grinding and polishing techniques. One or two of the glass lens elements can optionally be formed symmetrically, so as to be reversible. One glass element can optionally be piano-convex. A right-angle prism can direct light from a video display into the four glass elements. An achromatic prism can angularly divert the optical axis by about eight degrees and can direct light out of the four glass elements into a near-eye waveguide.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: July 5, 2022
    Assignee: Snap Inc.
    Inventors: Robert Matthew Bates, Adam Douglas Greengard
  • Patent number: 11327310
    Abstract: The present application discloses examples of various apparatuses and systems that can be utilized for augmented reality. According to one example, a wearable device that can optionally comprise: a frame configured for wearing by a user; one or more optical elements mounted on the frame; an array having a plurality of light emitting diodes coupled to the one or more optical elements, wherein the one or more optical elements and the array are mounted within a field of view of the user when the frame is worn by the user; and additional onboard electronic components carried by the frame including at least a battery that is configured to provide for electrically powered operation of the array.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: May 10, 2022
    Assignee: Snap Inc.
    Inventors: Robert Matthew Bates, Ilteris Canberk, Brandon Carrillo, David G. Fliszar, Adam Douglas Greengard, Kenneth Kubala, David Meisenholder, Jonathan M Rodriguez, II, Amit Singh, Samuel Thompson
  • Publication number: 20200150405
    Abstract: A projection lens can include four lens elements, each lens element being formed from glass and including spherical or planar incident and exiting surfaces. Compared to a projection lens that uses three lens elements, the four-element projection lens has relaxed manufactured and alignment tolerances. Unlike a projection lens that uses one or more plastic elements or uses aspherical surfaces, the all-glass projection lens can be manufactured using relatively fast and inexpensive grinding and polishing techniques. One or two of the glass lens elements can optionally be formed symmetrically, so as to be reversible. One glass element can optionally be piano-convex. A right-angle prism can direct light from a video display into the four glass elements. An achromatic prism can angularly divert the optical axis by about eight degrees and can direct light out of the four glass elements into a near-eye waveguide.
    Type: Application
    Filed: November 8, 2019
    Publication date: May 14, 2020
    Inventors: Robert Matthew Bates, Adam Douglas Greengard
  • Patent number: 8846435
    Abstract: An integrated die-level camera system and method of making the camera system include a first die-level camera formed at least partially in a die. A second die level camera is also formed at least partially in the die. Baffling is formed to block stray light between the first and second die-level cameras.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: September 30, 2014
    Assignee: OmniVision Technologies, Inc.
    Inventors: Dennis Gallagher, Adam Douglas Greengard, Paulo E. X. Silveira, Chris Linnen, Vlad V. Chumanchenko, Jungwon Aldinger
  • Publication number: 20140220725
    Abstract: An integrated die-level camera system and method of making the camera system include a first die-level camera formed at least partially in a die. A second die level camera is also formed at least partially in the die. Baffling is formed to block stray light between the first and second die-level cameras.
    Type: Application
    Filed: April 8, 2014
    Publication date: August 7, 2014
    Applicant: OmniVision Technologies, Inc.
    Inventors: Dennis Gallagher, Adam Douglas Greengard, Paulo E.X. Silveira, Chris Linnen, Vlad V. Chumanchenko, Jungwon Aldinger
  • Patent number: 8610813
    Abstract: An optical system for generating an image having extended depth of field. The system includes a phase mask and a chromatic wavefront coding lens. The chromatic wavefront coding lens provides axial color separation of light by generating specified chromatic aberration in an image created by the lens. The phase mask causes the optical transfer function of the optical system to remain substantially constant within a specified range away from the image plane, and the optical transfer function of the system contains no zeroes within at least one spectral passband of interest. Digital processing may be performed on the image to generate a final image by reversing a decrease in modulation transfer function generated by the phase mask.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: December 17, 2013
    Assignee: OmniVision Technologies, Inc.
    Inventors: Lu Gao, Adam Douglas Greengard
  • Publication number: 20120307133
    Abstract: An optical system for generating an image having extended depth of field. The system includes a phase mask and a chromatic wavefront coding lens. The chromatic wavefront coding lens provides axial color separation of light by generating specified chromatic aberration in an image created by the lens. The phase mask causes the optical transfer function of the optical system to remain substantially constant within a specified range away from the image plane, and the optical transfer function of the system contains no zeroes within at least one spectral passband of interest. Digital processing may be performed on the image to generate a final image by reversing a decrease in modulation transfer function generated by the phase mask.
    Type: Application
    Filed: May 31, 2011
    Publication date: December 6, 2012
    Inventors: Lu GAO, Adam Douglas GREENGARD
  • Patent number: 7550701
    Abstract: Systems and methods reduce aberrations in a wavefront imaged by an optical system having a non-linear detector. A wavefront of electromagnetic radiation from an object imaged to the non-linear detector is encoded. Data from the non-linear detector is digitally converted to form a digital representation of the image captured by the non-linear detector. The detected image is linearized to form a linearized image. The linearized image is filtered to reverse effects of wavefront coding to form a final image.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: June 23, 2009
    Assignee: OmniVision CDM Optics, Inc.
    Inventors: W. Thomas Cathey, Jr., Adam Douglas Greengard
  • Publication number: 20040165253
    Abstract: Systems and methods reduce aberrations in a wavefront imaged by an optical system having a non-linear detector. A wavefront of electromagnetic radiation from an object imaged to the non-linear detector is encoded. Data from the non-linear detector is digitally converted to form a digital representation of the image captured by the non-linear detector. The detected image is linearized to form a linearized image. The linearized image is filtered to reverse effects of wavefront coding to form a final image.
    Type: Application
    Filed: February 25, 2004
    Publication date: August 26, 2004
    Inventors: Wade Thomas Cathey, Adam Douglas Greengard