Patents by Inventor Adam J. G. Ellison

Adam J. G. Ellison has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6656859
    Abstract: A family of tellurite glasses and optical components for telecommunication systems, the glasses consisting essentially of, as calculated in cation percent, 65-97% TeO2, and at least one additional oxide of an element having a valence greater than two and selected from the group consisting of Ta, Nb, W, Ti, La, Zr, Hf, Y, Gd, Lu, Sc, Al and Ga, that may contain a lanthanide oxide as a dopant, in particular erbium oxide, and that, when so doped, is characterized by a fluorescent emission spectrum having a relatively broad FWHM value.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: December 2, 2003
    Assignee: Corning Incorporated
    Inventors: Bruce G. Aitken, Adam J. G. Ellison, Randall E. Youngman
  • Patent number: 6621624
    Abstract: Disclosed are optical gain fibers which include an erbium-containing core and a cladding surrounding the core and which have ripple of less than about 25% over about a 40 nm wide window or ripple of less than about 15% over about a 32 nm wide window, or both. In one embodiment, the optical gain fibers are pumpable at 980 nm and at 1480 nm. In another embodiment, the optical gain fibers are fusion sliceable. In yet another embodiment, the core includes oxides erbium; the cladding includes silicon dioxide; and the optical gain fiber has a passive loss of less than about 0.5% of the peak absorption of the erbium absorption band in the vicinity of 1530 nm. The optical gain fibers of the present invention have a wider gain window, improved flatness across the gain window, and/or increased gain as compared to conventional optical gain fibers.
    Type: Grant
    Filed: January 10, 2002
    Date of Patent: September 16, 2003
    Assignee: Corning Incorporated
    Inventors: Polly W. Chu, Adam J. G. Ellison, Douglas E. Goforth, Daniel W. Hawtof, Joseph M. Whalen
  • Publication number: 20030161598
    Abstract: The present invention relates to a glass article for use as an optical waveguide fiber and more particularly to an optical waveguide fiber, the core of which is doped with a chalcogenide element to significantly increase the refractive index of the core. The subject of this invention is novel doped silica core compositions wherein a portion of the oxygen in the silica is replaced with either sulfur, selenium or tellurium using plasma enhanced chemical vapor deposition (PECVD). These compositions are designed to have higher refractive indices than silica, low coefficients of expansion, high optical transparency, and appropriate viscosity and softening points to make them ideal candidates for use as optical waveguide fibers.
    Type: Application
    Filed: February 4, 2003
    Publication date: August 28, 2003
    Inventors: Adam J.G. Ellison, Rostislav R. Khrapko
  • Publication number: 20030128955
    Abstract: An isotopically-altered, silica based optical fiber is provided having lower losses, broader bandwidth, and broader Raman gain spectrum characteristics than conventional silica-based fiber. A heavier, less naturally abundant isotope of silicon or oxygen is substituted for a lighter, more naturally abundant isotope to shift the infrared absorption to a slightly longer wavelength. In one embodiment, oxygen-18 is substituted for the much more naturally abundant oxygen-16 at least in the core region of the fiber. The resulting isotopically-altered fiber has a minimum loss of 0.044 dB/km less than conventional fiber, and a bandwidth that is 17 percent broader for a loss range between 0.044-0.034 dB/km. The fiber may be easily manufactured with conventional fiber manufacturing equipment by way of a plasma chemical vapor deposition technique. When a 50 percent substitution of oxygen-18 for oxygen-16 is made in the core region of the fiber, the Raman gain spectrum is substantially broadened.
    Type: Application
    Filed: December 18, 2002
    Publication date: July 10, 2003
    Inventors: Douglas C. Allan, John T. Brown, Lisa C. Chacon, Adam J. G. Ellison, James C. Fajardo, Stuart Gray, Keith L. House, Karl W. Koch, Dale R. Powers, James A. West
  • Patent number: 6556757
    Abstract: The disclosed invention includes an amplifier fiber and methods of making the amplifier fiber. One embodiment of the inventive fiber includes a glass core and a glass cladding layer surrounding the glass core. The cladding glass layer has a refractive index which is less than a refractive index of the glass core. The fiber also includes a glass overclad layer surrounding the cladding layer. The overclad layer has a refractive index which is greater than the refractive index of the cladding layer. In another embodiment of the inventive fiber, the overclad layer is doped with an absorber. The absorber strips a mode of light propagating in the cladding from the cladding layer.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: April 29, 2003
    Assignee: Corning Incorporated
    Inventors: Adam J.G. Ellison, John D. Minelly, Jackson P. Trentelman
  • Patent number: 6555232
    Abstract: A family of titania lanthana aluminosilicate glasses, and products such as an electronic device having a poly-silicon coating on such glass as a substrate, are disclosed. The glasses have a strain point in excess of 780° C., a coefficient of thermal expansion of 20-60×10−7/° C., a Young's modulus of greater than 12 Mpsi and are chemically durable.
    Type: Grant
    Filed: November 28, 2001
    Date of Patent: April 29, 2003
    Assignee: Corning, Incorporated
    Inventors: Bruce G. Aitken, Adam J. G. Ellison, Thomas E. Paulson
  • Patent number: 6542690
    Abstract: The present invention relates to a glass article for use as an optical waveguide fiber and more particularly to an optical waveguide fiber, the core of which is doped with a chalcogenide element to significantly increase the refractive index of the core. The subject of this invention is novel doped silica core compositions wherein a portion of the oxygen in the silica is replaced with either sulfur, selenium or tellurium using plasma enhanced chemical vapor deposition (PECVD). These compositions are designed to have higher refractive indices than silica, low coefficients of expansion, high optical transparency, and appropriate viscosity and softening points to make them ideal candidates for use as optical waveguide fibers.
    Type: Grant
    Filed: May 8, 2000
    Date of Patent: April 1, 2003
    Assignee: Corning Incorporated
    Inventors: Adam J. G. Ellison, Rostislav R. Khrapko
  • Patent number: 6503860
    Abstract: According to one aspect of the present invention an optically active glass contains Sb2O3, up to about 4 mole % of an oxide of a rare earth element, and 0-20 mole % of a metal halide selected from the group consisting of a metal fluoride, a metal bromide, a metal chloride, and mixtures thereof, wherein this metal is a trivalent metal, a divalent metal, a monovalent metal, and mixtures thereof. In addition, any of the glass compositions described herein may contain up to 15 mole % B2O3 substituted for an equivalent amount of Sb2O3.
    Type: Grant
    Filed: February 4, 2000
    Date of Patent: January 7, 2003
    Assignee: Corning Incorporated
    Inventors: James E. Dickinson, Adam J. G. Ellison, Alexandre M. Mayolet, Michel Prassas
  • Publication number: 20020196529
    Abstract: Disclosed are optical gain fibers which include an erbium-containing core and a cladding surrounding the core and which have ripple of less than about 25% over about a 40 nm wide window or ripple of less than about 15% over about a 32 nm wide window, or both. In one embodiment, the optical gain fibers are pumpable at 980 nm and at 1480 nm. In another embodiment, the optical gain fibers are fusion sliceable. In yet another embodiment, the core includes oxides erbium; the cladding includes silicon dioxide; and the optical gain fiber has a passive loss of less than about 0.5% of the peak absorption of the erbium absorption band in the vicinity of 1530 nm. The optical gain fibers of the present invention have a wider gain window, improved flatness across the gain window, and/or increased gain as compared to conventional optical gain fibers.
    Type: Application
    Filed: January 10, 2002
    Publication date: December 26, 2002
    Inventors: Polly W. Chu, Adam J.G. Ellison, Douglas E. Goforth, Daniel W. Hawtof, Joseph M. Whalen
  • Patent number: 6444599
    Abstract: The present invention relates to an oxyhalide glass matrix including 0-70 mol. % SiO2, 5-35 mol. % Al2O3, 1-50 mol. % B2O3, 5-35 mol. % R2O, 0-12 wt. % F, 0-12 wt. % Cl, and 0 to 0.2 mol. % rare earth element, wherein R is Li, Na, K, Rb, or Cs. The present invention further relates to a method of producing the glass matrix and to a method of modifying the spectral properties of an oxyhalide glass.
    Type: Grant
    Filed: June 1, 2000
    Date of Patent: September 3, 2002
    Assignee: Corning Incorporation
    Inventors: James E. Dickinson, Adam J. G. Ellison
  • Publication number: 20020082156
    Abstract: A family of tellurite glasses and optical components for telecommunication systems, the glasses consisting essentially of, as calculated in cation percent, 65-97% TeO2, and at least one additional oxide of an element having a valence greater than two and selected from the group consisting of Ta, Nb, W, Ti, La, Zr, Hf, Y, Gd, Lu, Sc, Al and Ga, that may contain a lanthanide oxide as a dopant, in particular erbium oxide, and that, when so doped, is characterized by a fluorescent emission spectrum having a relatively broad FWHM value.
    Type: Application
    Filed: December 6, 2001
    Publication date: June 27, 2002
    Inventors: Bruce G. Aitken, Adam J. G. Ellison, Randall E. Youngman
  • Publication number: 20020082158
    Abstract: Glasses are disclosed which are used to produce substrates in flat panel display devices. The glasses exhibit a density less than about 2.45 gm/cm3 and a liquidus viscosity greater than about 200,000 poises, the glass consisting essentially of the following composition, expressed in terms of mol percent on an oxide basis: 65-75 SiO2, 7-13 Al2O3, 5-15 B2O3, 0-3 MgO, 5-15 CaO, 0-5 SrO, and essentially free of BaO. The glasses also exhibit a strain point exceeding 650° C.
    Type: Application
    Filed: November 16, 2001
    Publication date: June 27, 2002
    Applicant: Corning Incorporated
    Inventors: Lisa C. Chacon, Adam J.G. Ellison, George B. Hares, Jeffrey T. Kohli, Josef C. Lapp, Robert Morena
  • Patent number: 6410467
    Abstract: A glass consisting essentially of antimony oxide. An optically active glass consisting essentially of antimony oxide and up to about 4 mole % of an oxide of a rare earth element. A rare earth-doped, antimony oxide-containing glass including 0-99 mole % SiO2, 0-99 mole % GeO2, 0-75 mole % (Al, Ga)2O3, 0.5-99 mole % Sb2O3, and up to about 4 mole % of an oxide of a rare earth element. The oxide of the rare earth element may comprise Er2O3. The glass of the invention further includes fluorine, expressed as a metal fluoride. An optical energy-producing or light-amplifying device, in particular, an optical amplifier, comprising the above-described glass. The optical amplifier can be either a fiber amplifier or a planar amplifier, either of which may have a hybrid composition. Embodiments of the glass of the invention can be formed by conventional glass making techniques, while some of the high content antimony oxide embodiments are formed by splat or roller quenching.
    Type: Grant
    Filed: April 8, 1999
    Date of Patent: June 25, 2002
    Assignee: Corning Incorporated
    Inventors: James E. Dickinson, Adam J G Ellison, Alexandre M. Mayolet, Michel Prassas
  • Patent number: 6360564
    Abstract: A sol-gel method of preparing a powder for use in forming a glass is provided, along with methods of preparing glasses and glass fibers from the powder. The inventive method allows for the incorporation of a wide range of elements and compositions into a homogeneous glass or glass fiber that is substantially free of hydroxide groups. In addition, dopants incorporated into glasses prepared by the inventive method are uniformly distributed throughout the glass structure.
    Type: Grant
    Filed: January 20, 2000
    Date of Patent: March 26, 2002
    Assignee: Corning Incorporated
    Inventors: Lauren K. Cornelius, Adam J. G. Ellison, Ljerka Ukrainczyk
  • Patent number: 6352950
    Abstract: A family of alkali-tungsten-tellurite glasses that consist essentially of, as calculated in mole percent, 10-90% TeO2, at least 5% W03 and at least 0.5% R2O where R is Li, Na, K, Cs, Tl and mixtures, that may contain a lanthanide oxide as a dopant, in particular erbium oxide, and that, when so doped, is characterized by a fluorescent emission spectrum having a relatively broad FWHM value.
    Type: Grant
    Filed: May 31, 2000
    Date of Patent: March 5, 2002
    Assignee: Corning Incorporated
    Inventors: Bruce G. Aitken, Adam J. G. Ellison
  • Publication number: 20010055456
    Abstract: The disclosed invention includes an amplifier fiber and methods of making the amplifier fiber. One embodiment of the inventive fiber includes a glass core and a glass cladding layer surrounding the glass core. The cladding glass layer has a refractive index which is less than a refractive index of the glass core. The fiber also includes a glass overclad layer surrounding the cladding layer. The overclad layer has a refractive index which is greater than the refractive index of the cladding layer. In another embodiment of the inventive fiber, the overclad layer is doped with an absorber. The absorber strips a mode of light propagating in the cladding from the cladding layer.
    Type: Application
    Filed: February 26, 2001
    Publication date: December 27, 2001
    Inventors: Adam J.G. Ellison, John D. Minelly, Jackson P. Trentelman
  • Patent number: 6319867
    Abstract: Glasses are disclosed which are used to produce substrates in flat panel display devices. The glasses exhibit a density less than about 2.45 gm/cm3 and a liquidus viscosity greater than about 200,000 poises, the glass consisting essentially of the following composition, expressed in terms of mol percent on an oxide basis: 65-75 SiO2, 7-13 Al2O3, 5-15 B2O3, 0-3 MgO, 5-15 CaO, 0-5 SrO, and essentially free of BaO. The glasses also exhibit a strain point exceeding 650° C.
    Type: Grant
    Filed: November 22, 1999
    Date of Patent: November 20, 2001
    Assignee: Corning Incorporated
    Inventors: Lisa C. Chacon, Adam J. G. Ellison, George B. Hares, Jeffrey T. Kohli, Josef C. Lapp, Robert Morena
  • Patent number: 6194334
    Abstract: A family of alkali-tungsten-tellurite glasses that consist essentially of, as calculated in mole percent, 10-90% TeO2, at least 5% WO3 and at least 0.5% R2O where R is Li, Na, K, Cs, Tl and mixtures, that may contain a lanthanide oxide as a dopant, in particular erbium oxide, and that, when so doped, is characterized by a fluorescent emission spectrum having a relatively broad FWHM value.
    Type: Grant
    Filed: June 18, 1999
    Date of Patent: February 27, 2001
    Assignee: Corning Incorporated
    Inventors: Bruce G. Aitken, Adam J. G. Ellison
  • Patent number: 6153103
    Abstract: A method of separating ultra-fine particulates from an aqueous suspension such as a process stream or a waste stream. The method involves the addition of alkali silicate and an organic gelling agent to a volume of liquid, from the respective process or waste stream, to form a gel. The gel then undergoes syneresis to remove water and soluble salts from the gel containing the particulates, thus, forming a silica monolith. The silica monolith is then sintered to form a hard, nonporous waste form.
    Type: Grant
    Filed: March 5, 1999
    Date of Patent: November 28, 2000
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: David J. Chaiko, John P. Kopasz, Adam J. G. Ellison