Patents by Inventor Adam Panzica

Adam Panzica has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230358554
    Abstract: Various examples are directed to routing autonomous vehicles. A processor unit accesses first routing graph modification data and second routing graph modification data. The first routing graph modification data based at least in part on first vehicle capability data describing a first type of autonomous vehicle and the second routing graph modification data based at least in part on second vehicle capability data describing a second type of autonomous vehicle. The processor unit accesses routing graph data describing a plurality of graph elements and generates a first route for a first autonomous vehicle of the first type based at least in part on the first routing graph modification data and the routing graph data. The processor unit also generates a second route for a second autonomous vehicle of the second type based at least in part on the second routing graph modification data and the routing graph data.
    Type: Application
    Filed: June 22, 2023
    Publication date: November 9, 2023
    Inventors: Michael Voznesensky, Adam Panzica, Brent Goldman, Bryan John Nagy, Mark Yen, Adrian Rechy Romero
  • Patent number: 11713975
    Abstract: Various examples are directed to routing autonomous vehicles. A processor unit accesses first routing graph modification data and second routing graph modification data. The first routing graph modification data based at least in part on first vehicle capability data describing a first type of autonomous vehicle and the second routing graph modification data based at least in part on second vehicle capability data describing a second type of autonomous vehicle. The processor unit accesses routing graph data describing a plurality of graph elements and generates a first route for a first autonomous vehicle of the first type based at least in part on the first routing graph modification data and the routing graph data. The processor unit also generates a second route for a second autonomous vehicle of the second type based at least in part on the second routing graph modification data and the routing graph data.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: August 1, 2023
    Assignee: Uber Technologies, Inc.
    Inventors: Michael Voznesensky, Adam Panzica, Brent Goldman, Bryan John Nagy, Mark Yen, Adrian Rechy Romero
  • Patent number: 11621025
    Abstract: A method for receiving autonomous vehicle (AV) map data associated with an AV map of a geographic location and coverage map data associated with a coverage map of the geographic location. The AV map data is associated with an AV lane of a roadway in the geographic location, and the coverage map data is associated with a coverage lane of the roadway in the geographic location. The method includes generating a hybrid map of the geographic location based on the AV map data and the coverage map data and providing hybrid map data associated with the hybrid map for routing of an AV. The hybrid map includes the AV lane linked with the coverage lane of the roadway.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: April 4, 2023
    Assignee: UATC, LLC
    Inventors: Gordon Peter Bailey, Bryan John Nagy, Adam Henry Polk Milstein, Robert Zlot, Adam Panzica, Brett Bavar, David Prasser, Peter Hansen, Ethan Duff Eade, Xxx Xinjilefu, Brett Browning
  • Publication number: 20220179418
    Abstract: A method of controlling navigation of autonomous vehicles includes accessing map data descriptive of the identity and location of different travel ways within a surrounding environment of an autonomous vehicle and accessing constraint data descriptive of one or more geographic areas or geographic identifiers, within the map data, for which associated navigational constraints are defined. The constraint data includes a depart constraint that specifies an area that an autonomous vehicle may not enter but may exit if inside the area when the depart constraint is imposed, thereby preventing the autonomous vehicle from being trapped in a forbidden area even though the autonomous vehicle may safely complete its route. A travel route is determined for the autonomous vehicle based at least in part on the map data evaluated relative to the constraint data including the depart constraint, and motion of the autonomous vehicle is controlled based on the determined travel route.
    Type: Application
    Filed: February 28, 2022
    Publication date: June 9, 2022
    Inventors: Adam Panzica, Xiaodong Zhang
  • Patent number: 11287816
    Abstract: A computing system can generate a map constraint interface enabling a fleet operator to update map constraints for autonomous vehicles (AVs). The map constraint interface can comprise a unified document model enabling the fleet operator to configure a set of constraint layers of autonomy maps utilized by the AVs. Each constraint layer can include a toggle feature that enables the fleet operator to enable and disable the constraint layer. The system can receive, via the map constraint interface, a set of inputs configuring the set of constraint layers of the one or more autonomy maps, compile a set of updated map constraints, corresponding to the configured set of constraint layers, into a document container, and output the document container to a subset of the AVs to enable the subset of AVs to integrate the set of updated map constraints with the autonomy maps.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: March 29, 2022
    Assignee: UATC, LLC
    Inventors: Adam Panzica, Brett Bavar, Julie Derence, Marcial Hernandez, Tashwin Khurana, Bryan Nagy, Jordan Romaidis, Adrian Rechy Romero
  • Patent number: 11287818
    Abstract: A method of controlling navigation of autonomous vehicles includes accessing map data descriptive of the identity and location of different travel ways within a surrounding environment of an autonomous vehicle and accessing constraint data descriptive of one or more geographic areas or geographic identifiers, within the map data, for which associated navigational constraints are defined. The constraint data includes a depart constraint that specifies an area that an autonomous vehicle may not enter but may exit if inside the area when the depart constraint is imposed, thereby preventing the autonomous vehicle from being trapped in a forbidden area even though the autonomous vehicle may safely complete its route. A travel route is determined for the autonomous vehicle based at least in part on the map data evaluated relative to the constraint data including the depart constraint, and motion of the autonomous vehicle is controlled based on the determined travel route.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: March 29, 2022
    Assignee: UATC, LLC
    Inventors: Adam Panzica, Xiaodong Zhang
  • Patent number: 11157008
    Abstract: A control system for an autonomous vehicle can determine a risk value for each respective path segment of a plurality of path segments in a given area that includes a destination of the autonomous vehicle. The risk value can correspond to a cost layer in a map that includes the respective path segment. Based on the risk value for each respective path segment, the control system can determine a travel route for the autonomous vehicle to the destination, and autonomously control the autonomous vehicle to navigate along the travel route to the destination.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: October 26, 2021
    Assignee: UATC, LLC
    Inventors: Robert Dean, Bryan Nagy, Anthony Stentz, Brett Bavar, Xiaodong Zhang, Adam Panzica
  • Publication number: 20200233415
    Abstract: A method of controlling navigation of autonomous vehicles includes accessing map data descriptive of the identity and location of different travel ways within a surrounding environment of an autonomous vehicle and accessing constraint data descriptive of one or more geographic areas or geographic identifiers, within the map data, for which associated navigational constraints are defined. The constraint data includes a depart constraint that specifies an area that an autonomous vehicle may not enter but may exit if inside the area when the depart constraint is imposed, thereby preventing the autonomous vehicle from being trapped in a forbidden area even though the autonomous vehicle may safely complete its route. A travel route is determined for the autonomous vehicle based at least in part on the map data evaluated relative to the constraint data including the depart constraint, and motion of the autonomous vehicle is controlled based on the determined travel route.
    Type: Application
    Filed: August 12, 2019
    Publication date: July 23, 2020
    Inventors: Adam Panzica, Xiaodong Zhang
  • Publication number: 20200166361
    Abstract: Various examples are directed to routing autonomous vehicles. A processor unit accesses first routing graph modification data and second routing graph modification data. The first routing graph modification data based at least in part on first vehicle capability data describing a first type of autonomous vehicle and the second routing graph modification data based at least in part on second vehicle capability data describing a second type of autonomous vehicle. The processor unit accesses routing graph data describing a plurality of graph elements and generates a first route for a first autonomous vehicle of the first type based at least in part on the first routing graph modification data and the routing graph data. The processor unit also generates a second route for a second autonomous vehicle of the second type based at least in part on the second routing graph modification data and the routing graph data.
    Type: Application
    Filed: November 26, 2019
    Publication date: May 28, 2020
    Inventors: Michael Voznesensky, Adam Panzica, Brent Goldman, Bryan John Nagy, Mark Yen, Adrian Rechy Romero
  • Publication number: 20200019175
    Abstract: A control system for an autonomous vehicle can determine a risk value for each respective path segment of a plurality of path segments in a given area that includes a destination of the autonomous vehicle. The risk value can correspond to a cost layer in a map that includes the respective path segment. Based on the risk value for each respective path segment, the control system can determine a travel route for the autonomous vehicle to the destination, and autonomously control the autonomous vehicle to navigate along the travel route to the destination.
    Type: Application
    Filed: July 23, 2019
    Publication date: January 16, 2020
    Inventors: Robert Dean, Bryan Nagy, Anthony Stentz, Brett Bavar, Xiaodong Zhang, Adam Panzica
  • Publication number: 20190377342
    Abstract: A computing system can generate a map constraint interface enabling a fleet operator to update map constraints for autonomous vehicles (AVs). The map constraint interface can comprise a unified document model enabling the fleet operator to configure a set of constraint layers of autonomy maps utilized by the AVs. Each constraint layer can include a toggle feature that enables the fleet operator to enable and disable the constraint layer. The system can receive, via the map constraint interface, a set of inputs configuring the set of constraint layers of the one or more autonomy maps, compile a set of updated map constraints, corresponding to the configured set of constraint layers, into a document container, and output the document container to a subset of the AVs to enable the subset of AVs to integrate the set of updated map constraints with the autonomy maps.
    Type: Application
    Filed: June 7, 2019
    Publication date: December 12, 2019
    Inventors: Adam Panzica, Brett Bavar, Julie Derence, Marcial Hernandez, Tashwin Khurana, Bryan Nagy, Jordan Romaidis, Adrian Rechy Romero
  • Patent number: 10416677
    Abstract: A system and method for autonomous vehicle routing using annotated maps. For at least some path segments within a geographic region in which the vehicle is operating, values are determined for the path segments based at least on risk factors associated with autonomous operation of the vehicle along each path segment. Path segments are combined to generate a travel route, from a first location to a second location, based on the determined values, and the vehicle is controlled to navigate along the travel route.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: September 17, 2019
    Assignee: Uber Technologies, Inc.
    Inventors: Robert Dean, Bryan Nagy, Anthony Stentz, Brett Bavar, Xiaodong Zhang, Adam Panzica
  • Publication number: 20190146509
    Abstract: A system and method for autonomous vehicle routing using annotated maps. For at least some path segments within a geographic region in which the vehicle is operating, values are determined for the path segments based at least on risk factors associated with autonomous operation of the vehicle along each path segment. Path segments are combined to generate a travel route, from a first location to a second location, based on the determined values, and the vehicle is controlled to navigate along the travel route.
    Type: Application
    Filed: November 14, 2017
    Publication date: May 16, 2019
    Inventors: Robert Dean, Bryan Nagy, Anthony Stentz, Brett Bavar, Xiaodong Zhang, Adam Panzica
  • Publication number: 20190146508
    Abstract: A system and method for dynamic vehicle routing using annotated maps and profiles. The system receives a transport request for a user and generates a travel route for the user based on the transport request, data indicative of autonomous operation of the vehicle along the travel route, and data indicative of preferences for the user. The vehicle is controlled to traverse autonomously along the travel route.
    Type: Application
    Filed: November 14, 2017
    Publication date: May 16, 2019
    Inventors: Robert Dean, Bryan Nagy, Anthony Stentz, Brett Bavar, Xiaodong Zhang, Adam Panzica