Patents by Inventor Adam Shipley

Adam Shipley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140236287
    Abstract: A method of preventing paravalvular leakage includes concurrent delivery of a heart valve prosthesis and an annular sealing component. During delivery, the sealing component is moved from a first position to a second position of the heart valve prosthesis which is longitudinally spaced apart from the first position of the heart valve prosthesis. The sealing component is secured around the heart valve prosthesis at the second position by a contoured outer surface of the heart valve prosthesis. The sealing component may be a flexible ring or may be a cylindrical flexible sleeve having a plurality of ribs longitudinally extending over the cylindrical sleeve. The ribs operate to deploy the sealing component such that at least a portion of the cylindrical sleeve buckles outwardly away from the outer surface of the heart valve prosthesis.
    Type: Application
    Filed: February 21, 2013
    Publication date: August 21, 2014
    Applicant: Medtronic, Inc.
    Inventors: Cynthia Clague, Scott Mosher, Marian Creaven, Declan Costello, Gavin Kenny, Michael Krivoruchko, Adam Shipley, Mark Torrianni, Kshitija Garde, Eric Richardson
  • Publication number: 20140172075
    Abstract: A delivery system for use with a prosthetic heart valve having a stent frame to which a valve structure is attached includes a shaft assembly including a distal end, an intermediate portion, and a first coupling structure disposed near the distal end and configured to be coupled to a distal end of the prosthetic heart valve via a first tether. A sheath assembly defines a lumen sized to slidably receive the shaft assembly. The delivery system is configured to transition from a loaded state in which the sheath assembly encompasses the prosthetic heart valve to a deployed state in which the sheath assembly is withdrawn from the prosthetic heart valve. The first coupling structure is configured to be manipulated in a first direction to provide a controlled expansion or contraction of the distal end of the prosthetic heart valve.
    Type: Application
    Filed: December 3, 2013
    Publication date: June 19, 2014
    Applicant: Medtronic, Inc.
    Inventors: Robert J. Murray, III, Charles Tabor, Andrew Crisman, Adam Shipley
  • Publication number: 20140148889
    Abstract: Distal tips for use with delivery catheters are disclosed that are configured to maintain complete engagement between the distal tip and a distal opening of a sheath component of the delivery catheter so as to prevent separation therebetween and/or to prevent fish-mouthing of a distal leading edge of the sheath component during in vivo use. Distal tips so configured realize one or more of the objectives of safer tracking of the delivery catheter through the vasculature, safe crossing of the delivery catheter through structural components of the vasculature and heart, such as through native valves, and safe removal of the delivery catheter post deployment.
    Type: Application
    Filed: November 27, 2012
    Publication date: May 29, 2014
    Applicant: MEDTRONIC, INC.
    Inventors: Susheel Deshmukh, Siyan Som, Adam Shipley, Matthew Spurchise, Stephen Peter, Shishira Nagesh
  • Publication number: 20140046435
    Abstract: A percutaneous stented valve delivery device including an inner shaft, a sheath, and a delivery capsule. The sheath slidably receives the inner shaft. A capsule proximal zone is attached to the sheath. A capsule distal zone is configured to transition between normal and flared states. A diameter of the distal zone is greater in the flared state, and the capsule includes a shape memory component that naturally assumes the normal state. The device is operable to perform a reversible partial deployment procedure in which a portion of the prosthesis is exposed distal the capsule and allowed to radially expand. Subsequently, with distal advancement of the capsule, the distal zone transitions to the flared state and imparts a collapsing force onto the prosthesis, causing the prosthesis to radially collapse and become recaptured within the delivery capsule. The capsule can include a laser cut tube encapsulated by a polymer.
    Type: Application
    Filed: October 17, 2013
    Publication date: February 13, 2014
    Applicant: Medtronic, Inc.
    Inventors: Hubert Yeung, John Shanahan, Joshua Dwork, Adam Shipley, Jeffrey Allen, Susheel Deshmukh, Kishore Udipi, Ya Guo
  • Patent number: 8623075
    Abstract: A delivery system for use with a prosthetic heart valve having a stent frame to which a valve structure is attached includes a shaft assembly including a distal end, an intermediate portion, and a first coupling structure disposed near the distal end and configured to be coupled to a distal end of the prosthetic heart valve via a first tether. A sheath assembly defines a lumen sized to slidably receive the shaft assembly. The delivery system is configured to transition from a loaded state in which the sheath assembly encompasses the prosthetic heart valve to a deployed state in which the sheath assembly is withdrawn from the prosthetic heart valve. The first coupling structure is configured to be manipulated in a first direction to provide a controlled expansion or contraction of the distal end of the prosthetic heart valve.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: January 7, 2014
    Assignee: Medtronic, Inc.
    Inventors: Robert J. Murray, III, Charles Tabor, Andrew Crisman, Adam Shipley
  • Patent number: 8562673
    Abstract: A percutaneous stented valve delivery device including an inner shaft, a sheath, and a delivery capsule. The sheath slidably receives the inner shaft. A capsule proximal zone is attached to the sheath. A capsule distal zone is configured to transition between normal and flared states. A diameter of the distal zone is greater in the flared state, and the capsule includes a shape memory component that naturally assumes the normal state. The device is operable to perform a reversible partial deployment procedure in which a portion of the prosthesis is exposed distal the capsule and allowed to radially expand. Subsequently, with distal advancement of the capsule, the distal zone transitions to the flared state and imparts a collapsing force onto the prosthesis, causing the prosthesis to radially collapse and become recaptured within the delivery capsule. The capsule can include a laser cut tube encapsulated by a polymer.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: October 22, 2013
    Assignee: Medtronic, Inc.
    Inventors: Hubert Yeung, John Shanahan, Joshua Dwork, Adam Shipley, Jeffrey Allen, Susheel Deshmukh, Kishore Udipi, Ya Guo
  • Publication number: 20130274855
    Abstract: A delivery system for percutaneously delivering and deploying a stented prosthetic heart valve. The delivery device includes a delivery sheath slidably disposed over an inner shaft, and a capture assembly. The capture assembly includes at least one release feature for releasing the stented prosthetic heart valve from the delivery device.
    Type: Application
    Filed: March 7, 2013
    Publication date: October 17, 2013
    Applicant: MEDTRONIC CV LUXEMBOURG S.A.R.L.
    Inventors: Glenn Stante, Joshua Dwork, Donna Barrett, Niall Duffy, Hubert Yeung, Adam Shipley
  • Publication number: 20120303111
    Abstract: An attachment mechanism for coupling a stent to a delivery system is disclosed. The attachment mechanism is configured to pivot relative to an inner shaft assembly of the delivery system in order to release the stent from the delivery system.
    Type: Application
    Filed: August 10, 2012
    Publication date: November 29, 2012
    Applicant: Medtronic, Inc.
    Inventors: Joshua Dwork, Hubert Yeung, Adam Shipley
  • Publication number: 20120022628
    Abstract: An attachment mechanism for coupling a stent to a delivery system is disclosed. The attachment mechanism is configured to pivot relative to an inner shaft assembly of the delivery system in order to release the stent from the delivery system.
    Type: Application
    Filed: July 23, 2010
    Publication date: January 26, 2012
    Applicant: Medtronic, Inc.
    Inventors: Joshua Dwork, Hubert Yeung, Adam Shipley
  • Publication number: 20110264203
    Abstract: A delivery device for percutaneously deploying a prosthetic valve includes a sheath, an inner shaft, and a release assembly. The release assembly is disposed between the sheath and the inner shaft, and includes a retraction member, a release member, and a retention member. The retraction member can self-retract in length from an extended condition to a retracted condition. The release member can self-expand from a compressed condition to an expanded condition. The retention member is distal the release member. In a delivery state, the sheath end is distal the retention member, the release member is in the compressed condition and the retraction member in the extended condition to retain the prosthesis. In a deployment state, the sheath end is positioned to permit the release member to self-transition to the expanded condition, allowing the retraction member to self-transition to the retracted condition and release the prosthesis.
    Type: Application
    Filed: April 27, 2011
    Publication date: October 27, 2011
    Applicant: Medtronic Vascular, Inc.
    Inventors: Joshua Dwork, Glenn Stante, Adam Shipley
  • Publication number: 20110264198
    Abstract: A delivery system for use with a prosthetic heart valve having a stent frame to which a valve structure is attached includes a shaft assembly including a distal end, an intermediate portion, and a first coupling structure disposed near the distal end and configured to be coupled to a distal end of the prosthetic heart valve via a first tether. A sheath assembly defines a lumen sized to slidably receive the shaft assembly. The delivery system is configured to transition from a loaded state in which the sheath assembly encompasses the prosthetic heart valve to a deployed state in which the sheath assembly is withdrawn from the prosthetic heart valve. The first coupling structure is configured to be manipulated in a first direction to provide a controlled expansion or contraction of the distal end of the prosthetic heart valve.
    Type: Application
    Filed: April 21, 2011
    Publication date: October 27, 2011
    Applicant: Medtronic, Inc.
    Inventors: Robert J. Murray, III, Charles Tabor, Andrew Crisman, Adam Shipley
  • Publication number: 20110251681
    Abstract: A delivery system for percutaneously deploying a prosthetic heart valve. The system includes an inner shaft assembly, a delivery sheath capsule and a handle maintaining a first actuator and a second actuator. The capsule is configured to compressively retain the prosthetic heart valve over the inner shaft assembly. The first actuator is operated to proximally retract the delivery sheath capsule and expose the prosthetic heart valve relative to the capsule. The second actuator is operated to proximally retract the prosthetic heart valve by transmitting forces to the inner shaft assembly.
    Type: Application
    Filed: April 9, 2010
    Publication date: October 13, 2011
    Applicant: Medtronic, Inc.
    Inventors: Adam Shipley, John P. Shanahan, Andrew Crisman
  • Publication number: 20110098804
    Abstract: A percutaneous stented valve delivery device including an inner shaft, a sheath, and a delivery capsule. The sheath slidably receives the inner shaft. A capsule proximal zone is attached to the sheath. A capsule distal zone is configured to transition between normal and flared states. A diameter of the distal zone is greater in the flared state, and the capsule includes a shape memory component that naturally assumes the normal state. The device is operable to perform a reversible partial deployment procedure in which a portion of the prosthesis is exposed distal the capsule and allowed to radially expand. Subsequently, with distal advancement of the capsule, the distal zone transitions to the flared state and imparts a collapsing force onto the prosthesis, causing the prosthesis to radially collapse and become recaptured within the delivery capsule. The capsule can include a laser cut tube encapsulated by a polymer.
    Type: Application
    Filed: September 21, 2010
    Publication date: April 28, 2011
    Inventors: Hubert Yeung, John Shanahan, Joshua Dwork, Adam Shipley, Jeffrey Allen, Susheel Deshmukh, Kishore Udipi, Ya Guo