Patents by Inventor Adebabay M. Bekele

Adebabay M. Bekele has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11689207
    Abstract: Phase-locked loop circuitry generates an output signal based on transformer based voltage controlled oscillator (VCO) circuitry. The VCO circuitry includes upper band circuitry including first oscillation circuitry, a first harmonic filter circuitry coupled to the first oscillation circuitry, and a first selection transistor coupled to the first harmonic filter circuitry and a current source. The first harmonic filter circuitry filters the output signal. The lower band circuitry includes second oscillation circuitry, a second harmonic filter circuitry coupled to the second oscillation circuitry, and a second selection transistor coupled to the second harmonic filter circuitry and the current source. The second harmonic filter circuitry filters the output signal.
    Type: Grant
    Filed: March 14, 2022
    Date of Patent: June 27, 2023
    Assignee: XILINX, INC.
    Inventors: Adebabay M. Bekele, Parag Upadhyaya
  • Patent number: 11637528
    Abstract: Transformer based voltage controlled oscillator circuitry for phase-locked loop circuitry includes upper band circuitry and lower band circuitry. The upper band circuitry operates in a first frequency range and includes a first capacitor array having a variable capacitance. The lower band circuitry operates in a second frequency range and includes a second capacitor array having a variable capacitance. The first frequency range higher than the second frequency range. In a first operating mode, the first capacitor array has a first capacitance value and the second capacitor array has a second capacitance value. In a second operating mode, the second capacitor array has a third capacitance value different than the second capacitance value.
    Type: Grant
    Filed: March 8, 2022
    Date of Patent: April 25, 2023
    Assignee: XILINX, INC.
    Inventors: Adebabay M. Bekele, Parag Upadhyaya
  • Patent number: 10868663
    Abstract: Apparatus and associated methods relate to implementing an analog auxiliary clock and data recovery (CDR) path to provide a high bandwidth CDR in a transceiver that supports both PAM4 and NRZ signaling. In an illustrative example, the auxiliary CDR path may include a phase-frequency detector (PFD)-based phase-locked loop (PLL) and a phase detector (PD)-based PLL. When the PFD-based PLL is locked to a reference clock signal of the transceiver, the PFD-based PLL may be then disabled and the PD-based PLL may be then enabled. Implementing the auxiliary CDR path may advantageously enable the transceiver to implement much larger parts per million (ppm) acquisition and tracking, and thus enable the transceiver to advantageously support new standards such as Peripheral Component Interconnect Express (PCIe) 5.0 and PCIe 6.0, for example.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: December 15, 2020
    Assignee: XILINX, INC.
    Inventors: Didem Z. Turker Melek, Mayank Raj, Adebabay M. Bekele, Parag Upadhyaya, Yohan Frans
  • Patent number: 10715153
    Abstract: Apparatus and associated methods relate to automatically generating a data structure representation of an on-chip inductive-capacitive (LC) tank circuit by determining parasitic inductances in each of the segments of conductive paths that connect a main inductor to one or more selectable VCO components such as capacitors and varactors, for example. In an illustrative example, one or more of the selectable VCO components may be arranged, when selected, to form a parallel resonant LC tank with the main inductor. A method may include defining nodes ai terminating each of the segments along the conductive paths between the main inductor terminals and a drive circuit. By modelling the paths as multi-port inductors and transformers, resonant frequency of the VCO may be more accurately predicted by simulation.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: July 14, 2020
    Assignee: XILINX, INC.
    Inventors: Adebabay M. Bekele, Parag Upadhyaya, Didem Z. Turker Melek, Jing Jing
  • Patent number: 10630301
    Abstract: A voltage-controlled oscillator (VCO) includes an inductor-capacitor (LC) tank circuit, tuning circuitry, and a plurality of first varactors. The LC tank circuit is configured to produce an oscillating signal and is operable in a plurality of frequency bands. The tuning circuitry is configured to tune the LC tank circuit to operate in a first frequency band of the plurality of frequency bands based at least in part on a temperature of the VCO. The plurality of first varactors are coupled to the LC tank circuit for tuning the oscillating signal to a target frequency within the first frequency band based on a control voltage.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: April 21, 2020
    Assignee: Xilinx, Inc.
    Inventors: Adebabay M. Bekele, Parag Upadhyaya, Didem Z. Turker Melek
  • Patent number: 10623008
    Abstract: In an example, a phase-locked loop (PLL) circuit includes an error detector operable to generate an error signal; an oscillator operable to provide an output signal having an output frequency based on the error signal and a frequency band select signal, the output frequency being a frequency multiplier times a reference frequency; a frequency divider operable to divide the output frequency of the output signal to generate a feedback signal based on a divider control signal; a sigma-delta modulator (SDM) operable to generate the divider control signal based on inputs indicative of an integer value and a fractional value of the frequency multiplier, the SDM responsive to an order select signal operable to select an order of the SDM; and a state machine operable to, in an acquisition state, generate the frequency band select signal and set the order of the SDM.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: April 14, 2020
    Assignee: XILINX, INC.
    Inventors: Parag Upadhyaya, Adebabay M. Bekele, Didem Z. Turker Melek, Zhaoyin D. Wu
  • Patent number: 9742380
    Abstract: An example a phase-locked loop (PLL) circuit includes a sampling phase detector configured to receive a reference clock and a feedback clock and configured to supply a first control current and a pulse signal. The PLL further includes a charge pump configured to generate a second control current based on the first control current and the pulse signal. The PLL further includes a loop filter configured to filter the second control current and generate an oscillator control voltage. The PLL further includes a voltage controlled oscillator (VCO) configured to generate an output clock based on the oscillator control voltage. The PLL further includes a frequency divider configured to generate the reference clock from the output clock.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: August 22, 2017
    Assignee: XILINX, INC.
    Inventors: Mayank Raj, Parag Upadhyaya, Adebabay M. Bekele
  • Patent number: 9608644
    Abstract: An example phase-locked loop (PLL) circuit includes a voltage controlled oscillator (VCO) configured to generate an output clock based on an oscillator control voltage, a sub-sampling phase detector configured to receive a reference clock and the output clock, and a phase frequency detector configured to receive the reference clock and a feedback clock. The PLL circuit includes a charge pump configured to generate a charge pump current, a multiplexer circuit configured to select either output of the sub-sampling phase detector or output of the phase frequency detector to control the charge pump, and a lock detector configured to receive the reference clock, the feedback clock, and the output of the phase frequency detector to control the multiplexer. The PLL circuit includes a loop filter configured to filter the charge pump current and generate the oscillator control voltage, and a frequency divider configured to generate the reference clock from the output clock.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: March 28, 2017
    Assignee: XILINX, INC.
    Inventors: Mayank Raj, Parag Upadhyaya, Adebabay M. Bekele
  • Publication number: 20160322979
    Abstract: In an example, a phase-locked loop (PLL) circuit includes an error detector operable to generate an error signal; an oscillator operable to provide an output signal having an output frequency based on the error signal and a frequency band select signal, the output frequency being a frequency multiplier times a reference frequency; a frequency divider operable to divide the output frequency of the output signal to generate a feedback signal based on a divider control signal; a sigma-delta modulator (SDM) operable to generate the divider control signal based on inputs indicative of an integer value and a fractional value of the frequency multiplier, the SDM responsive to an order select signal operable to select an order of the SDM; and a state machine operable to, in an acquisition state, generate the frequency band select signal and set the order of the SDM.
    Type: Application
    Filed: April 30, 2015
    Publication date: November 3, 2016
    Applicant: XILINX, INC.
    Inventors: Parag Upadhyaya, Adebabay M. Bekele, Didem Z. Turker Melek, Zhaoyin D. Wu
  • Patent number: 9325277
    Abstract: Voltage-controlled oscillation is described. In an apparatus therefor, an inductor has a tap and has or is coupled to a positive-side output node and a negative side output node. The tap is coupled to receive a first current. A coarse grain capacitor array is coupled to the positive-side output node and the negative side output node and is coupled to respectively receive select signals. A varactor is coupled to the positive-side output node and the negative side output node and is coupled to receive a control voltage. The varactor includes MuGFETs. A transconductance cell is coupled to the positive-side output node and the negative side output node, and the transconductance cell has a common node. A frequency scaled resistor network is coupled to the common node and is coupled to receive the select signals for a resistance for a path for a second current.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: April 26, 2016
    Assignee: XILINX, INC.
    Inventors: Adebabay M. Bekele, Parag Upadhyaya
  • Patent number: 8614599
    Abstract: One embodiment of an integrated circuit includes a local circuit block, a first power supply for supplying power to a first terminal of the local circuit block, a second power supply for supplying power to a second terminal of the local circuit block, a first transmission gate coupled between the second terminal of the local circuit block and a current path from the second power supply, and a second transmission gate coupled between the current path from the second power supply and a gate of a p-type metal-oxide-semiconductor (PMOS) transistor in the first transmission gate, the second transmission gate including a single transistor.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: December 24, 2013
    Assignee: Xilinx, Inc.
    Inventors: Adebabay M. Bekele, Aman Sewani, Xuewen Jiang
  • Patent number: 8218712
    Abstract: A method and apparatus for dividing clock frequencies are disclosed. For example, a circuit according to one embodiment of includes a high-speed divider and a plurality of programmable dividers cascading with the high-speed divider, wherein the plurality of programmable dividers are of a lower speed than the high-speed divider.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: July 10, 2012
    Assignee: Xilinx, Inc.
    Inventors: Xuewen Jiang, Adebabay M. Bekele
  • Patent number: 7759973
    Abstract: A clock distribution network having: a backbone clock signal line configured to provide a differential clock signal; multiple branches coupled to the backbone clock signal line for distributing the differential clock signal to multiple programmable function elements; a first leaf node coupled to a first branch, where the first leaf node is configured to provide the differential clock signal to a first programmable function element; and a second leaf node coupled to a second branch, where the second leaf node is configured to provide a single ended clock signal derived from the differential clock signal to a second programmable function element.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: July 20, 2010
    Assignee: Xilinx, Inc.
    Inventors: Vasisht Mantra Vadi, Steven P. Young, Atul V. Ghia, Adebabay M. Bekele, Suresh M. Menon
  • Patent number: 7518401
    Abstract: A clock distribution network having: a main trunk configured to provide a differential clock signal; a plurality of branches coupled to the main trunk for distributing the differential clock signal to a plurality of circuit elements on the integrated circuit; and a plurality of switches coupling the main trunk to the plurality of branches.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: April 14, 2009
    Assignee: Xilinx, Inc.
    Inventors: Vasisht Mantra Vadi, Steven P. Young, Atul V. Ghia, Adebabay M. Bekele, Suresh M. Menon
  • Patent number: 7414430
    Abstract: A clock distribution network having: a backbone clock signal line configured to provide a differential clock signal; multiple branches coupled to the backbone clock signal line for distributing the differential clock signal to multiple programmable function elements; a first leaf node coupled to a first branch, where the first leaf node is configured to provide the differential clock signal to a first programmable function element; and a second leaf node coupled to a second branch, where the second leaf node is configured to provide a single ended clock signal derived from the differential clock signal to a second programmable function element.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: August 19, 2008
    Assignee: Xilinx, Inc.
    Inventors: Vasisht Mantra Vadi, Steven P. Young, Atul V. Ghia, Adebabay M. Bekele, Suresh M. Menon
  • Patent number: 7372299
    Abstract: A clock distribution network having: a main trunk configured to provide a differential clock signal; a plurality of branches coupled to the main trunk for distributing the differential clock signal to a plurality of circuit elements on the integrated circuit; and a plurality of switches coupling the main trunk to the plurality of branches.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: May 13, 2008
    Assignee: Xilinx, Inc.
    Inventors: Vasisht Mantra Vadi, Steven P. Young, Atul V. Ghia, Adebabay M. Bekele, Suresh M. Menon
  • Patent number: 7187709
    Abstract: One or more configurable transceivers can be fabricated on an integrated circuit. The transceivers contain various components having options that can be configured by turning configuration memory cells on or off. The integrated circuit may also contain programmable fabric. Other components in the transceivers can have options that are controlled by the programmable fabric. The integrated circuit may also contain one or more processor cores. The processor core and the transceivers can be connected by a plurality of signal paths that pass through the programmable fabric.
    Type: Grant
    Filed: March 1, 2002
    Date of Patent: March 6, 2007
    Assignee: Xilinx, Inc.
    Inventors: Suresh M. Menon, Atul V. Ghia, Warren E. Cory, Paul T. Sasaki, Philip M. Freidin, Santiago G. Asuncion, Philip D. Costello, Vasisht M. Vadi, Adebabay M. Bekele, Hare K. Verma
  • Patent number: 7142033
    Abstract: A system for distributing a small signal differential signal to a circuit element. The system includes: a first converter configured to convert a first small signal differential signal to a first two phase full CMOS differential signal for input into the differential multiplexer; and a programmable driver circuit configured to boost an output current of the programmable driver circuit at selected frequencies and to convert two phase full CMOS differential signal outputs of the differential multiplexer to a second small signal differential signal.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: November 28, 2006
    Assignee: Xilinx, Inc.
    Inventors: Atul V. Ghia, Adebabay M. Bekele
  • Patent number: 7129765
    Abstract: A clock distribution network having: a main trunk configured to provide a differential clock signal; a plurality of branches coupled to the main trunk for distributing the differential clock signal to a plurality of circuit elements on the integrated circuit; and a plurality of switches coupling the main trunk to the plurality of branches.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: October 31, 2006
    Assignee: Xilinx, Inc.
    Inventors: Vasisht Mantra Vadi, Steven P. Young, Atul V. Ghia, Adebabay M. Bekele, Suresh M. Menon
  • Patent number: 7126406
    Abstract: A clock distribution network having: a backbone clock signal line configured to provide a differential clock signal; multiple branches coupled to the backbone clock signal line for distributing the differential clock signal to multiple programmable function elements; a first leaf node coupled to a first branch, where the first leaf node is configured to provide the differential clock signal to a first programmable function element; and a second leaf node coupled to a second branch, where the second leaf node is configured to provide a single ended clock signal derived from the differential clock signal to a second programmable function element.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: October 24, 2006
    Assignee: Xilinx, Inc.
    Inventors: Vasisht Mantra Vadi, Steven P. Young, Atul V. Ghia, Adebabay M. Bekele, Suresh M. Menon