Patents by Inventor Adegbola O. Adenusi

Adegbola O. Adenusi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11185615
    Abstract: A method of making a solution including poly(ethylene terephthalate). The method includes dissolving poly(ethylene terephthalate) in a solvent mixture to form a solution, the solvent mixture including two solvent components. A Hansen Solubility Parameter Distance between the solvent mixture and HSP coordinates having a dispersion HSP of 18.02 MPa0.5, a polar HSP of 5.56 MPa0.5, and a hydrogen bonding HSP of 14.27 MPa0.5 is less than about 2 MPa0.5.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: November 30, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Joseph T. Delaney, Jr., David R. Wulfman, Adeniyi O. Aremu, Adegbola O. Adenusi
  • Patent number: 11155933
    Abstract: A medical electrical lead includes an insulative lead body extending from a distal region to a proximal region and a conductor disposed within the insulative lead body and extending from the proximal region to the distal region. An electrode is disposed on the insulative lead body and is in electrical contact with the conductor. The medical electrical lead also includes a cross-linked hydrophilic polymer coating disposed over at least a portion of the electrode. The cross-linked hydrophilic polymer coating includes a fibrous matrix comprising a plurality of discrete fibers and pores formed between at least a portion of the fibers and a hydrophilic polyethylene glycol-containing hydrogel network disposed within the pores of the fibrous matrix.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: October 26, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Joseph T. Delaney, Jr., Jeannette C. Polkinghorne, Adegbola O. Adenusi, David R. Wulfman, Kasyap Seethamraju
  • Patent number: 10874843
    Abstract: A medical device made of a hybrid polymeric structure includes a tubular body including a first layer and a second layer. The first layer includes a fibrous matrix comprising a plurality of randomly oriented nanofibers made at least in part of a first polymeric material and pores formed between at least a portion of the nanofibers. The second layer is made at least in part of a second polymeric material. At least a portion of the second layer is disposed about and between the plurality of nanofibers such that at least a portion of the second polymeric material is embedded into at least a portion of the pores of the fibrous matrix.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: December 29, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Adegbola O. Adenusi, James P. Rohl, David R. Wulfman, Joseph T. Delaney, Jr., Adeniyi Aremu
  • Publication number: 20200038561
    Abstract: A method of making a solution including poly(ethylene terephthalate). The method includes dissolving poly(ethylene terephthalate) in a solvent mixture to form a solution, the solvent mixture including two solvent components. A Hansen Solubility Parameter Distance between the solvent mixture and HSP coordinates having a dispersion HSP of 18.02 MPa0.5, a polar HSP of 5.56 MPa0.5, and a hydrogen bonding HSP of 14.27 MPa0.5 is less than about 2 MPa0.5.
    Type: Application
    Filed: October 10, 2019
    Publication date: February 6, 2020
    Inventors: Joseph T. Delaney, JR., David R. Wulfman, Adeniyi O. Aremu, Adegbola O. Adenusi
  • Patent number: 10441688
    Abstract: A method of making a solution including poly(ethylene terephthalate). The method includes dissolving poly(ethylene terephthalate) in a solvent mixture to form a solution, the solvent mixture including two solvent components. A Hansen Solubility Parameter Distance between the solvent mixture and HSP coordinates having a dispersion HSP of 18.02 MPa0.5, a polar HSP of 5.56 MPa0.5, and a hydrogen bonding HSP of 14.27 MPa0.5 is less than about 2 MPa0.5.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: October 15, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Joseph T. Delaney, Jr., David R. Wulfman, Adeniyi O. Aremu, Adegbola O. Adenusi
  • Publication number: 20190127886
    Abstract: A medical electrical lead includes an insulative lead body extending from a distal region to a proximal region and a conductor disposed within the insulative lead body and extending from the proximal region to the distal region. An electrode is disposed on the insulative lead body and is in electrical contact with the conductor. The medical electrical lead also includes a cross-linked hydrophilic polymer coating disposed over at least a portion of the electrode. The cross-linked hydrophilic polymer coating includes a fibrous matrix comprising a plurality of discrete fibers and pores formed between at least a portion of the fibers and a hydrophilic polyethylene glycol-containing hydrogel network disposed within the pores of the fibrous matrix.
    Type: Application
    Filed: December 27, 2018
    Publication date: May 2, 2019
    Inventors: Joseph T. Delaney, JR., Jeannette C. Polkinghorne, Adegbola O. Adenusi, David R. Wulfman, Kasyap Seethamraju
  • Patent number: 10111986
    Abstract: A method for making a device including a polyisobutylene-polyurethane block copolymer. The method includes polymerizing a polyisobutylene diol, a diisocyanate, and a chain extender within a solvent system to form a polyisobutylene-polyurethane block copolymer solution, depositing the polyisobutylene-polyurethane block copolymer solution onto at least a portion of the device, and evaporating the solvent system from the deposited polyisobutylene-polyurethane block copolymer solution.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: October 30, 2018
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Joseph T. Delaney, Jr., Niraj Gurung, David R. Wulfman, Adegbola O. Adenusi, Patrick Willoughby, Adeniyi O. Aremu
  • Publication number: 20180264248
    Abstract: A medical device made of a hybrid polymeric structure includes a tubular body including a first layer and a second layer. The first layer includes a fibrous matrix comprising a plurality of randomly oriented nanofibers made at least in part of a first polymeric material and pores formed between at least a portion of the nanofibers. The second layer is made at least in part of a second polymeric material. At least a portion of the second layer is disposed about and between the plurality of nanofibers such that at least a portion of the second polymeric material is embedded into at least a portion of the pores of the fibrous matrix.
    Type: Application
    Filed: May 7, 2018
    Publication date: September 20, 2018
    Inventors: Adegbola O. Adenusi, James P. Rohl, David R. Wulfman, Joseph T. Delaney, JR., Adeniyi Aremu
  • Patent number: 9987478
    Abstract: A method for making a tubular medical device having a hybrid polymeric structure includes forming a first layer comprising a non-woven fibrous matrix made of a first polymeric material and forming a second layer comprising a second polymeric material about the first layer such that at least a portion of the second polymeric material of the second layer embeds into at least a portion of the first polymeric material of the first layer.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: June 5, 2018
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Adegbola O. Adenusi, James P. Rohl, David R. Wulfman, Joseph T. Delaney, Jr., Adeniyi Aremu
  • Patent number: 9855415
    Abstract: A medical electrical lead includes an insulative lead body extending from a distal region to a proximal region, a conductor disposed within the insulative lead body and extending from the proximal region to the distal region, an electrode disposed on the insulative lead body and in electrical contact with the conductor, and a fibrous matrix disposed on at least part of the electrode. The fibrous matrix includes fibers. The fibers include a polyvinylidene fluoride-based (PVDF-based) polymer and a crystal-modifying additive. The PVDF-based polymer includes an amorphous PVDF phase and a crystalline PVDF phase. The crystalline PVDF phase includes a beta form crystalline structure in an amount exceeding any other crystalline structure form in the crystalline PVDF phase.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: January 2, 2018
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Joseph T. Delaney, Jr., David R. Wulfman, Adeniyi O. Aremu, Adegbola O. Adenusi
  • Publication number: 20170290957
    Abstract: A method of making a solution including poly(ethylene terephthalate). The method includes dissolving poly(ethylene terephthalate) in a solvent mixture to form a solution, the solvent mixture including two solvent components. A Hansen Solubility Parameter Distance between the solvent mixture and HSP coordinates having a dispersion HSP of 18.02 MPa0.5, a polar HSP of 5.56 MPa0.5, and a hydrogen bonding HSP of 14.27 MPa0.5 is less than about 2 MPa0.5.
    Type: Application
    Filed: April 12, 2017
    Publication date: October 12, 2017
    Inventors: Joseph T. Delaney, JR., David R. Wulfman, Adeniyi O. Aremu, Adegbola O. Adenusi
  • Publication number: 20170174845
    Abstract: A polymeric material includes a polyisobutylene-polyurethane block copolymer and a tertiary amine catalyst. The polyisobutylene-polyurethane block copolymer includes soft segments including at least one polyisobutylene diol residue, and hard segments including at least one diisocyanate residue. The polymeric material is free of an organometallic catalyst.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 22, 2017
    Inventors: Joseph T. Delaney, Jr., Niraj Gurung, Patrick Willoughby, David R. Wulfman, Adegbola O. Adenusi, Adeniyi O. Aremu
  • Publication number: 20170106124
    Abstract: A method for making a device including a polyisobutylene-polyurethane block copolymer. The method includes polymerizing a polyisobutylene diol, a diisocyanate, and a chain extender within a solvent system to form a polyisobutylene-polyurethane block copolymer solution, depositing the polyisobutylene-polyurethane block copolymer solution onto at least a portion of the device, and evaporating the solvent system from the deposited polyisobutylene-polyurethane block copolymer solution.
    Type: Application
    Filed: October 14, 2016
    Publication date: April 20, 2017
    Inventors: Joseph T. Delaney, JR., Niraj Gurung, David R. Wulfman, Adegbola O. Adenusi, Patrick Willoughby, Adeniyi O. Aremu
  • Publication number: 20170021160
    Abstract: A medical electrical lead includes an insulative lead body extending from a distal region to a proximal region, a conductor disposed within the insulative lead body and extending from the proximal region to the distal region, an electrode disposed on the insulative lead body and in electrical contact with the conductor, and a fibrous matrix disposed on at least part of the electrode. The fibrous matrix includes fibers. The fibers include a polyvinylidene fluoride-based (PVDF-based) polymer and a crystal-modifying additive. The PVDF-based polymer includes an amorphous PVDF phase and a crystalline PVDF phase. The crystalline PVDF phase includes a beta form crystalline structure in an amount exceeding any other crystalline structure form in the crystalline PVDF phase.
    Type: Application
    Filed: July 22, 2016
    Publication date: January 26, 2017
    Inventors: Joseph T. Delaney, JR., David R. Wulfman, Adeniyi O. Aremu, Adegbola O. Adenusi
  • Publication number: 20160311983
    Abstract: A method of making a solution including a block copolymer includes dissolving the block copolymer in a solvent mixture to form a solution, the solvent mixture including at least two solvent components. The solubility of the block copolymer in the solvent mixture is at least about 7 wt. % at about 64° C. The solvent mixture is non-reactive with the block copolymer. The solubility of the block copolymer in a single solvent solution consisting of any one of the at least two solvent components and the block copolymer is not greater than about 1 wt. % at about 64° C. The block copolymer includes polyisobutylene segments and polyurethane segments.
    Type: Application
    Filed: April 13, 2016
    Publication date: October 27, 2016
    Inventors: Joseph T. Delaney, JR., David R. Wulfman, Adeniyi Aremu, Adegbola O. Adenusi
  • Publication number: 20150202423
    Abstract: A method for making a tubular medical device having a hybrid polymeric structure includes forming a first layer comprising a non-woven fibrous matrix made of a first polymeric material and forming a second layer comprising a second polymeric material about the first layer such that at least a portion of the second polymeric material of the second layer embeds into at least a portion of the first polymeric material of the first layer.
    Type: Application
    Filed: January 20, 2015
    Publication date: July 23, 2015
    Inventors: Adegbola O. Adenusi, James P. Rohl, David R. Wulfman, Joseph T. Delaney, JR., Adeniyi Aremu
  • Publication number: 20150025608
    Abstract: A medical electrical lead includes an insulative lead body extending from a distal region to a proximal region and a conductor disposed within the insulative lead body and extending from the proximal region to the distal region. An electrode is disposed on the insulative lead body and is in electrical contact with the conductor. The medical electrical lead also includes a cross-linked hydrophilic polymer coating disposed over at least a portion of the electrode. The cross-linked hydrophilic polymer coating includes a fibrous matrix comprising a plurality of discrete fibers and pores formed between at least a portion of the fibers and a hydrophilic polyethylene glycol-containing hydrogel network disposed within the pores of the fibrous matrix.
    Type: Application
    Filed: July 11, 2014
    Publication date: January 22, 2015
    Inventors: Joseph T. Delaney, JR., Jeannette C. Polkinghorne, Adegbola O. Adenusi, David R. Wulfman, Kasyap Seethamraju