Patents by Inventor Aditya Rajagopal

Aditya Rajagopal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9154235
    Abstract: The present disclosure describes an optically powered transducer with a photovoltaic collector. An optical fiber power delivery method and system and a free space power delivery method are also provided. A fabrication process for making an optically powered transducer is further described, together with an implantable transducer system based on optical power delivery.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: October 6, 2015
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Axel Scherer, Aditya Rajagopal, Seheon Kim, Andrew P. Homyk
  • Publication number: 20150279949
    Abstract: Systems and methods for molecular sensing are described. Molecular sensors are described which are based on field-effect or bipolar junction transistors. These transistors have a nanopillar with a functionalized layer contacted to either the base or the gate electrode. The functional layer can bind molecules, which causes an electrical signal in the sensor.
    Type: Application
    Filed: May 22, 2015
    Publication date: October 1, 2015
    Inventors: Aditya RAJAGOPAL, Chieh-feng CHANG, Oliver PLETTENBURG, Stefan PETRY, Axel SCHERER, Charles L. TSCHIRHART
  • Publication number: 20150279948
    Abstract: Systems and methods for molecular sensing are described. Molecular sensors are described which are based on field-effect or bipolar junction transistors. These transistors have a nanopillar with a functionalized layer contacted to either the base or the gate electrode. The functional layer can bind molecules, which causes an electrical signal in the sensor.
    Type: Application
    Filed: May 22, 2015
    Publication date: October 1, 2015
    Inventors: Aditya RAJAGOPAL, Chieh-feng CHANG, Oliver PLETTENBURG, Stefan PETRY, Axel SCHERER, Charles L. TSCHIRHART
  • Patent number: 9128124
    Abstract: A voltage sensing apparatus on a semiconductor substrate, including one or more inputs comprising metal contacts, an output comprising a laser transmitter, circuitry electrically connecting and interfacing the inputs to the output; and a power module. A method of fabricating the apparatus is also described.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: September 8, 2015
    Assignee: California Institute of Technology
    Inventors: Aditya Rajagopal, Chieh-Feng Chang, Akram Sarwat Sadek, Axel Scherer, Raymond Jimenez
  • Publication number: 20150222073
    Abstract: A microlaser system includes an optical source, a microlaser, an actuator switch, and a photovoltaic power source. The microlaser, which includes a control element, is optically pumped by at least a portion of light emitted by the optical source. The actuator switch is configured to be activated by a triggering event. Furthermore, the photovoltaic power source is coupled in a series connection with the actuator switch and the control element, the series connection configured to connect the photovoltaic power source to the control element of the microlaser when the actuator switch is activated by the triggering event.
    Type: Application
    Filed: April 10, 2015
    Publication date: August 6, 2015
    Inventors: Seheon KIM, Axel SCHERER, Aditya RAJAGOPAL, Chieh-Feng CHANG
  • Patent number: 9099436
    Abstract: The basic structure and functionality of a probe as disclosed herein allows for flexibly incorporating into the probe, various sensing elements for various sensing applications. Two example applications among these various sensing applications include bio-sensing and chemical-sensing applications. For bio-sensing applications the probe, which is fabricated upon a silicon substrate, includes a bio-sensing element such as a nano-pillar transistor, and for chemical-sensing applications the probe includes a sensing element that has a functionalized contact area whereby the sensing element generates a voltage when exposed to one or more chemicals of interest.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: August 4, 2015
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Aditya Rajagopal, Axel Scherer, Michael D. Henry, Sameer Walavalkar, Thomas A. Tombrello, Andrew P. Homyk
  • Patent number: 9089819
    Abstract: Methods and devices for isolating and sorting nanoparticles are disclosed herein. Nanopores of a desired size can be formed in silicon dioxide membranes and used as filters to separate nanoparticles. Devices are also provided herein for sorting nanoparticles with multiple filters having various sized nanopores.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: July 28, 2015
    Assignee: California Institute of Technology
    Inventors: Sameer Walavalkar, Aditya Rajagopal, Axel Scherer, Thomas A. Tombrello
  • Patent number: 9070733
    Abstract: Systems and methods for molecular sensing are described. Molecular sensors are described which are based on field-effect or bipolar junction transistors. These transistors have a nanopillar with a functionalized layer contacted to either the base or the gate electrode. The functional layer can bind molecules, which causes an electrical signal in the sensor.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: June 30, 2015
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Aditya Rajagopal, Chieh-feng Chang, Oliver Plettenburg, Stefan Petry, Axel Scherer, Charles L. Tschirhart
  • Publication number: 20150167092
    Abstract: FRET-based analytes detection and related methods and systems are described where a pair of FRET labeled primers and/or oligonucleotides are used that are specific for target sequences located at a distance up to four time the Förster distance of the FRET chromophores presented on the FRET labeled primers and/or oligonucleotides one with respect to the other in one or more polynucleotide analyte; in particular the pair of FRET labeled primers and/or oligonucleotides is combined with a sample and subjected to one or more polynucleotide amplification reactions before measuring FRET signals from at least one FRET chromophore.
    Type: Application
    Filed: February 26, 2015
    Publication date: June 18, 2015
    Inventors: Emil P. KARTALOV, Aditya RAJAGOPAL, Axel SCHERER, Mark D. GOLDBERG
  • Patent number: 9031102
    Abstract: A microlaser system includes an optical source, a microlaser, an actuator switch, and a photovoltaic power source. The microlaser, which includes a control element, is optically pumped by at least a portion of light emitted by the optical source. The actuator switch is configured to be activated by a triggering event. Furthermore, the photovoltaic power source is coupled in a series connection with the actuator switch and the control element, the series connection configured to connect the photovoltaic power source to the control element of the microlaser when the actuator switch is activated by the triggering event.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: May 12, 2015
    Assignee: California Institute of Technology
    Inventors: Seheon Kim, Axel Scherer, Aditya Rajagopal, Chieh-Feng Chang
  • Publication number: 20150057178
    Abstract: This disclosure provides methods, systems, compositions, and kits for the multiplexed detection of a plurality of analytes in a sample. In some examples, this disclosure provides methods, systems, compositions, and kits wherein multiple analytes may be detected in a single sample volume by acquiring a cumulative measurement or measurements of at least one quantifiable component of a signal. In some cases, additional components of a signal, or additional signals (or components thereof) are also quantified. Each signal or component of a signal may be used to construct a coding scheme which can then be used to determine the presence or absence of any analyte.
    Type: Application
    Filed: August 5, 2014
    Publication date: February 26, 2015
    Inventors: Emil Kartalov, Aditya Rajagopal, Axel Scherer
  • Publication number: 20140357974
    Abstract: A field effect nano-pillar transistor has a pillar shaped gate element incorporating a biomimitec portion that provides various advantages over prior art devices. The small size of the nano-pillar transistor allows for advantageous insertion into cellular membranes, and the biomimitec character of the gate element operates as an advantageous interface for sensing small amplitude voltages such as transmembrane cell potentials. The nano-pillar transistor can be used in various embodiments to stimulate cells, to measure cell response, or to perform a combination of both actions.
    Type: Application
    Filed: August 19, 2014
    Publication date: December 4, 2014
    Inventors: Aditya RAJAGOPAL, Axel SCHERER, Michael D. HENRY, Sameer WALAVALKAR, Thomas A. TOMBRELLO, Andrew P. HOMYK
  • Publication number: 20140341591
    Abstract: The present disclosure describes an optically powered transducer with a photovoltaic collector. An optical fiber power delivery method and system and a free space power delivery method are also provided. A fabrication process for making an optically powered transducer is further described, together with an implantable transducer system based on optical power delivery.
    Type: Application
    Filed: June 17, 2014
    Publication date: November 20, 2014
    Inventors: Axel SCHERER, Aditya RAJAGOPAL, Seheon KIM, Andrew P. HOMYK
  • Patent number: 8883645
    Abstract: Methods for fabrication of nanopillar field effect transistors are described. These transistors can have high height-to-width aspect ratios and be CMOS compatible. Silicon nitride may be used as a masking material. These transistors have a variety of applications, for example they can be used for molecular sensing if the nanopillar has a functionalized layer contacted to the gate electrode. The functional layer can bind molecules, causing an electrical signal in the transistor.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: November 11, 2014
    Assignee: California Institute of Technology
    Inventors: Chieh-Feng Chang, Aditya Rajagopal, Axel Scherer
  • Patent number: 8841712
    Abstract: A field effect nano-pillar transistor has a pillar shaped gate element incorporating a biomimitec portion that provides various advantages over prior art devices. The small size of the nano-pillar transistor allows for advantageous insertion into cellular membranes, and the biomimitec character of the gate element operates as an advantageous interface for sensing small amplitude voltages such as transmembrane cell potentials. The nano-pillar transistor can be used in various embodiments to stimulate cells, to measure cell response, or to perform a combination of both actions.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: September 23, 2014
    Assignee: California Institute of Technology
    Inventors: Aditya Rajagopal, Axel Scherer, Michael D. Henry, Sameer Walavalkar, Thomas A. Tombrello, Andrew P. Homyk
  • Patent number: 8838394
    Abstract: This disclosure provides methods, systems, compositions, and kits for the multiplexed detection of a plurality of analytes in a sample. In some examples, this disclosure provides methods, systems, compositions, and kits wherein multiple analytes may be detected in a single sample volume by acquiring a cumulative measurement or measurements of at least one quantifiable component of a signal. In some cases, additional components of a signal, or additional signals (or components thereof) are also quantified. Each signal or component of a signal may be used to construct a coding scheme which can then be used to determine the presence or absence of any analyte.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: September 16, 2014
    Assignee: California Institute of Technology
    Inventors: Emil Kartalov, Aditya Rajagopal, Axel Scherer
  • Publication number: 20140234848
    Abstract: Novel methods and systems for encoding cryptographic information are disclosed. A message can be encoded through a sequence of nucleic acids by assigning a binary value to a pair of nucleic acids, while other nucleic acids can be used for spacing. Unique organisms can also be used for identification. The nucleic acids can be encapsulated in organic materials such as saccharide-based desiccants.
    Type: Application
    Filed: December 23, 2013
    Publication date: August 21, 2014
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Aditya RAJAGOPAL, Thomas A. TOMBRELLO
  • Publication number: 20140221799
    Abstract: A process is described for testing a biomedical property of an internal tissue of a patient. Optical energy emitted by an external source is transferred through a nail of the patient to an instrument device implanted beneath the nail. A portion of the transferred optical energy is converted to electrical power for driving components of the implanted instrument. Using the electrical power, a characteristic of the internal tissue associated with the measurement of the biomedical property is sensed and an optical signal based on the sensed characteristic is transmitted through the nail to an external data reader.
    Type: Application
    Filed: January 13, 2014
    Publication date: August 7, 2014
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Aditya RAJAGOPAL, Axel SCHERER, Akram Sarwat SADEK
  • Publication number: 20140213471
    Abstract: This disclosure provides methods, compositions and kits for the detection of a plurality of analytes in a sample. In some examples, this disclosure provides methods, compositions, and kits for detecting analytes, genetic variations, monitoring reaction process, and monitoring analyte-analyte interactions by measuring signals. In some examples, the presence of signals or changes in signals may be used to construct signal profiles which can be used to detect analytes.
    Type: Application
    Filed: January 23, 2014
    Publication date: July 31, 2014
    Applicant: California Institute of Technology
    Inventors: Aditya RAJAGOPAL, Mark D. GOLDBERG, Erika F. GARCIA, Xiomara L. MADERO, Thomas A. TOMBRELLO, Axel SCHERER
  • Patent number: 8787752
    Abstract: The present disclosure describes an optically powered transducer with a photovoltaic collector. An optical fiber power delivery method and system and a free space power delivery method are also provided. A fabrication process for making an optically powered transducer is further described, together with an implantable transducer system based on optical power delivery.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: July 22, 2014
    Assignee: California Institute of Technology
    Inventors: Axel Scherer, Aditya Rajagopal, Seheon Kim, Andrew P. Homyk