Patents by Inventor Adnan Kutubuddin Bohori

Adnan Kutubuddin Bohori has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955274
    Abstract: A receiver unit of a wireless power transfer system is presented. The receiver unit includes a main receiver coil, a plurality of auxiliary receiver coils disposed about a central axis of the main receiver coil, and a receiver drive subunit. The receiver drive subunit includes a main converter operatively coupled to the main receiver coil and having a main output terminal. The receiver drive subunit may include a plurality of auxiliary converters operatively coupled to the plurality of auxiliary receiver coils. The plurality of auxiliary converters may be operatively coupled to each other to form an auxiliary output terminal coupled in series to the main output terminal to form a common output terminal. In some implementations, the receiver drive unit may be formed on a substrate of an integrated electronic component. The integrated electronic component may further include a communication subunit and a controller disposed.
    Type: Grant
    Filed: May 22, 2023
    Date of Patent: April 9, 2024
    Assignee: General Electric Company
    Inventors: Viswanathan Kanakasabai, Deepak Aravind, Suma Memana Narayana Bhat, Adnan Kutubuddin Bohori
  • Patent number: 11916405
    Abstract: This disclosure provides systems, devices, apparatus and methods, including computer programs encoded on storage media, for wireless power transmission. In accordance with this disclosure, a wireless power transmission apparatus (such as a charging pad) may support positional freedom such that a wireless power receiving apparatus may be charged regardless of positioning or orientation of the wireless power receiving apparatus. Various implementations include the use of multiple primary coils in a wireless power transmission apparatus. The multiple primary coils may be configured in a pattern, size, shape, or arrangement that enhances positional freedom. In some implementations, the placement of the multiple primary coils may optimize the size and distribution of electromagnetic fields that are available to charge a wireless power receiving apparatus.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: February 27, 2024
    Assignee: GE Hybrid Technologies, LLC
    Inventors: Suma Memana Narayana Bhat, Viswanathan Kanakasabai, Deepak Aravind, Jayanti Ganesh, Adnan Kutubuddin Bohori
  • Publication number: 20230331103
    Abstract: A detection device (100) includes a detection mat (102) having a plurality of detection coils (106), and at least one pair of groups of detection coils (106), the pair of groups of detection coils (106) includes first and second groups of detection coils (106). The first and second group of detection coils (106) comprises first and second first and second impedance values. The detection device (100) includes one or more drive sub-systems (112) and a comparison sub-system (112). The drive sub-systems (112) are operatively coupled to the detection mat (102) and configured to excite at least one pair of groups of detection coils (106). The comparison sub-system (114) is operatively coupled to the detection mat (102) and configured to receive a differential current signal from the pair of groups of detection coils (106), the comparison sub-system (114) is configured to generate a control signal based on the differential current signal.
    Type: Application
    Filed: June 21, 2023
    Publication date: October 19, 2023
    Inventors: Viswanathan Kanakasabai, Deepak Aravind, Suma Memana Narayana Bhat, Adnan Kutubuddin Bohori
  • Publication number: 20230293834
    Abstract: A method includes receiving a pressure signal from a pressure sensor and/or a flow signal from a flow sensor and receiving signals from one or more sensors that measure different physiological parameters from the pressure sensor and the flow sensor. The method includes detecting the onset of the spontaneous breath by the patient based on the pressure signal and/or the flow signal and synchronizing providing breathing support to the patient with the onset of the spontaneous breath detected utilizing the pressure signal and/or the flow signal. The method includes calibrating parameters and thresholds to be utilized in detecting the onset of the spontaneous breath based on the signals. The method includes after calibration, switching to: detecting the onset of the spontaneous breath by the patient based on the signals and synchronizing providing breathing support to the patient with the onset of the spontaneous breath detected utilizing the signals.
    Type: Application
    Filed: March 15, 2022
    Publication date: September 21, 2023
    Inventors: Upasana Ramakrishnan, Sanketh Bhat, Etika Agarwal, Adnan Kutubuddin Bohori, Ayush Gaurav, Harleen Boparai
  • Publication number: 20230298810
    Abstract: A receiver unit of a wireless power transfer system is presented. The receiver unit includes a main receiver coil, a plurality of auxiliary receiver coils disposed about a central axis of the main receiver coil, and a receiver drive subunit. The receiver drive subunit includes a main converter operatively coupled to the main receiver coil and having a main output terminal. The receiver drive subunit may include a plurality of auxiliary converters operatively coupled to the plurality of auxiliary receiver coils. The plurality of auxiliary converters may be operatively coupled to each other to form an auxiliary output terminal coupled in series to the main output terminal to form a common output terminal. In some implementations, the receiver drive unit may be formed on a substrate of an integrated electronic component. The integrated electronic component may further include a communication subunit and a controller disposed.
    Type: Application
    Filed: May 22, 2023
    Publication date: September 21, 2023
    Inventors: Viswanathan Kanakasabai, Deepak Aravind, Suma Memana Narayana Bhat, Adnan Kutubuddin Bohori
  • Publication number: 20230293835
    Abstract: A computer-implemented method for detecting onset of a spontaneous breath by a patient coupled to a ventilation system includes receiving, at a processor, an electromyography (EMG) signal from an EMG sensor disposed on the patient. The method also includes pre-conditioning, via the processor, the EMG signal to separate the EMG signal into a plurality of components having EMG information utilizing a set of bandpass filters. The method further includes individually analyzing, via the processor, each component of the plurality of components to detect an onset of the spontaneous breath by the patient. The method still further includes determining, via the processor, the onset of the spontaneous breath by the patient is occurring when at least two components of the plurality of components indicate the onset of the spontaneous breath by the patient.
    Type: Application
    Filed: March 15, 2022
    Publication date: September 21, 2023
    Inventors: Upasana Ramakrishnan, Sanketh Bhat, Etika Agarwal, Adnan Kutubuddin Bohori
  • Publication number: 20230268775
    Abstract: A wireless charging device includes a power source configured to generate a direct current (DC) voltage signal. Also, the wireless charging device includes a driver unit configured to receive the DC voltage signal and convert the DC voltage signal to a first alternating current (AC) voltage signal. Further, the wireless charging device includes a transmitting unit including a resonant capacitor and a resonant coil, coupled to the driver unit, wherein the transmitting unit is configured to receive and transmit the first AC voltage signal. Additionally, the wireless charging device includes a control unit configured to detect a receiver device based on a change in at least one of a capacitive voltage across the resonant capacitor and an inductive voltage across the resonant coil if the receiver device is positioned within a predetermined distance from the transmitting unit.
    Type: Application
    Filed: April 26, 2023
    Publication date: August 24, 2023
    Inventors: Sivabalan Mohan, Somakumar Ramachandrapanicker, Arun Kumar Raghunathan, Rajendra Naik, Adnan Kutubuddin Bohori
  • Patent number: 11685269
    Abstract: A detection device includes a detection mat having a plurality of detection coils, and at least one pair of groups of detection coils, the pair of groups of detection coils includes first and second groups of detection coils. The first and second group of detection coils comprises first and second first and second impedance values. The detection device includes one or more drive sub-systems and a comparison sub-system. The drive sub-systems are operatively coupled to the detection mat and configured to excite at least one pair of groups of detection coils. The comparison sub-system is operatively coupled to the detection mat and configured to receive a differential current signal from the pair of groups of detection coils, the comparison subsystem is configured to generate a control signal based on the differential current signal.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: June 27, 2023
    Assignee: General Electric Company
    Inventors: Viswanathan Kanakasabai, Deepak Aravind, Suma Memana Narayana Bhat, Adnan Kutubuddin Bohori
  • Patent number: 11670449
    Abstract: A receiver unit of a wireless power transfer system is presented. The receiver unit includes a main receiver coil, a plurality of auxiliary receiver coils disposed about a central axis of the main receiver coil, and a receiver drive subunit. The receiver drive subunit includes a main converter operatively coupled to the main receiver coil and having a main output terminal. The receiver drive subunit may include a plurality of auxiliary converters operatively coupled to the plurality of auxiliary receiver coils. The plurality of auxiliary converters may be operatively coupled to each other to form an auxiliary output terminal coupled in series to the main output terminal to form a common output terminal. In some implementations, the receiver drive unit may be formed on a substrate of an integrated electronic component. The integrated electronic component may further include a communication subunit and a controller disposed.
    Type: Grant
    Filed: April 21, 2022
    Date of Patent: June 6, 2023
    Assignee: General Electric Company
    Inventors: Viswanathan Kanakasabai, Deepak Aravind, Suma Memana Narayana Bhat, Adnan Kutubuddin Bohori
  • Patent number: 11641134
    Abstract: A wireless charging device includes a power source configured to generate a direct current (DC) voltage signal. Also, the wireless charging device includes a driver unit configured to receive the DC voltage signal and convert the DC voltage signal to a first alternating current (AC) voltage signal. Further, the wireless charging device includes a transmitting unit including a resonant capacitor and a resonant coil, coupled to the driver unit, wherein the transmitting unit is configured to receive and transmit the first AC voltage signal. Additionally, the wireless charging device includes a control unit configured to detect a receiver device based on a change in at least one of a capacitive voltage across the resonant capacitor and an inductive voltage across the resonant coil if the receiver device is positioned within a predetermined distance from the transmitting unit.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: May 2, 2023
    Assignee: General Electric Company
    Inventors: Sivabalan Mohan, Somakumar Ramachandrapanicker, Arun Kumar Raghunathan, Rajendra Naik, Adnan Kutubuddin Bohori
  • Publication number: 20220337098
    Abstract: A receiver unit of a wireless power transfer system is presented. The receiver unit includes a main receiver coil, a plurality of auxiliary receiver coils disposed about a central axis of the main receiver coil, and a receiver drive subunit. The receiver drive subunit includes a main converter operatively coupled to the main receiver coil and having a main output terminal. The receiver drive subunit may include a plurality of auxiliary converters operatively coupled to the plurality of auxiliary receiver coils. The plurality of auxiliary converters may be operatively coupled to each other to form an auxiliary output terminal coupled in series to the main output terminal to form a common output terminal. In some implementations, the receiver drive unit may be formed on a substrate of an integrated electronic component. The integrated electronic component may further include a communication subunit and a controller disposed.
    Type: Application
    Filed: April 21, 2022
    Publication date: October 20, 2022
    Inventors: Viswanathan Kanakasabai, Deepak Aravind, Suma Memana Narayana Bhat, Adnan Kutubuddin Bohori
  • Patent number: 11390173
    Abstract: A power system including at least one electrical machine, plurality of doubly fed induction machines (DFIMs), a plurality of first power converters, and a speed regulation unit is presented. The electrical machine includes a mechanical input end and at least one of a first stator winding terminal and a first rotor winding terminal. Each DFIM includes a second stator winding terminal, a second rotor winding terminal, and a mechanical output end. At least one of the first stator winding terminal and the first rotor winding terminal is coupled to one of first power converters and the second rotor winding terminal of each DFIM is coupled to one of the first power converters. The speed regulation unit is coupled to at least one of the mechanical input end and the mechanical output end.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: July 19, 2022
    Assignee: TRANSPORTATION IP HOLDINGS, LLC
    Inventors: Govardhan Ganireddy, Rupam Mukherjee, Shahid Ali, Ajith Kuttannair Kumar, Manthram Sivasubramaniam, Adnan Kutubuddin Bohori
  • Patent number: 11316381
    Abstract: A receiver unit of a wireless power transfer system is presented. The receiver unit includes a main receiver coil, a plurality of auxiliary receiver coils disposed about a central axis of the main receiver coil, and a receiver drive subunit. The receiver drive subunit includes a main converter operatively coupled to the main receiver coil and having a main output terminal. The receiver drive subunit may include a plurality of auxiliary converters operatively coupled to the plurality of auxiliary receiver coils. The plurality of auxiliary converters may be operatively coupled to each other to form an auxiliary output terminal coupled in series to the main output terminal to form a common output terminal. In some implementations, the receiver drive unit may be formed on a substrate of an integrated electronic component. The integrated electronic component may further include a communication subunit and a controller disposed.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: April 26, 2022
    Assignee: General Electric Company
    Inventors: Viswanathan Kanakasabai, Deepak Aravind, Suma Memana Narayana Bhat, Adnan Kutubuddin Bohori
  • Patent number: 11018530
    Abstract: This disclosure provides systems, devices, apparatus and methods, including computer programs encoded on storage media, for wireless power transmission. In accordance with this disclosure, a wireless power transmission apparatus (such as a charging pad) may support positional freedom such that a wireless power receiving apparatus may be charged regardless of positioning or orientation of the wireless power receiving apparatus. Various implementations include the use of multiple primary coils in a wireless power transmission apparatus. In some implementations, a wireless power transmission apparatus having multiple local controllers to activate different primary coils. In some implementations, the wireless power transmission apparatus may support concurrent charging of multiple wireless power receiving apparatuses.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: May 25, 2021
    Assignee: GE Hybrid Technologies, LLC
    Inventors: Suma Memana Narayana Bhat, Viswanathan Kanakasabai, Deepak Aravind, Adnan Kutubuddin Bohori
  • Publication number: 20210152027
    Abstract: A receiver unit of a wireless power transfer system is presented. The receiver unit includes a main receiver coil, a plurality of auxiliary receiver coils disposed about a central axis of the main receiver coil, and a receiver drive subunit. The receiver drive subunit includes a main converter operatively coupled to the main receiver coil and having a main output terminal. The receiver drive subunit may include a plurality of auxiliary converters operatively coupled to the plurality of auxiliary receiver coils. The plurality of auxiliary converters may be operatively coupled to each other to form an auxiliary output terminal coupled in series to the main output terminal to form a common output terminal. In some implementations, the receiver drive unit may be formed on a substrate of an integrated electronic component. The integrated electronic component may further include a communication subunit and a controller disposed.
    Type: Application
    Filed: March 22, 2019
    Publication date: May 20, 2021
    Inventors: Viswanathan Kanakasabai, Deepak Aravind, Suma Memana Narayana Bhat, Adnan Kutubuddin Bohori
  • Publication number: 20210138917
    Abstract: A detection device (100) includes a detection mat (102) having a plurality of detection coils (106), and at least one pair of groups of detection coils (106), the pair of groups of detection coils (106) includes first and second groups of detection coils (106). The first and second group of detection coils (106) comprises first and second first and second impedance values. The detection device (100) includes one or more drive sub-systems (112) and a comparison sub-system (112). The drive sub-systems (112) are operatively coupled to the detection mat (102) and configured to excite at least one pair of groups of detection coils (106). The comparison sub-system (114) is operatively coupled to the detection mat (102) and configured to receive a differential current signal from the pair of groups of detection coils (106), the comparison sub-system (114) is configured to generate a control signal based on the differential current signal.
    Type: Application
    Filed: April 17, 2019
    Publication date: May 13, 2021
    Inventors: Viswanathan Kanakasabai, Deepak Aravind, Suma Memana Narayana Bhat, Adnan Kutubuddin Bohori
  • Patent number: 10978880
    Abstract: A system including a primary coil assembly is provided. The primary coil assembly is configured to operate at a first resonant frequency having a first bandwidth; wherein a difference between the first resonant frequency and a system frequency is at least two times the first bandwidth, where the first resonant frequency is selected such that upon energizing the primary coil assembly at the system frequency, a primary current is induced in the primary coil assembly, which is at least ten times lesser than a system current.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: April 13, 2021
    Assignee: General Electric Company
    Inventors: Arun Kumar Raghunathan, Somakumar Ramachandrapanicker, Suma Memana Narayana Bhat, Rijin Saseendran, Adnan Kutubuddin Bohori, Dinkar Agrawal
  • Publication number: 20210101488
    Abstract: A power system including at least one electrical machine, plurality of doubly fed induction machines (DFIMs), a plurality of first power converters, and a speed regulation unit is presented. The electrical machine includes a mechanical input end and at least one of a first stator winding terminal and a first rotor winding terminal. Each DFIM includes a second stator winding terminal, a second rotor winding terminal, and a mechanical output end. At least one of the first stator winding terminal and the first rotor winding terminal is coupled to one of first power converters and the second rotor winding terminal of each DFIM is coupled to one of the first power converters. The speed regulation unit is coupled to at least one of the mechanical input end and the mechanical output end.
    Type: Application
    Filed: April 3, 2018
    Publication date: April 8, 2021
    Inventors: Govardhan Ganireddy, Rupam Mukherjee, Shahid Ali, Ajith Kuttannair Kumar, Manthram Sivasubramaniam, Adnan Kutubuddin Bohori
  • Publication number: 20210083526
    Abstract: A device for detecting a foreign object (112) in a WPT system is disclosed. The device includes an injection unit (122) to receive a DC power signal and generate a first AC power signal having a first frequency. Also, the device includes an array of coils (120) to receive the first AC power signal having the first frequency and generate a first electromagnetic field at the first frequency. Further, the device includes a detection unit (124) to measure a parameter of at least one of the DC power signal received by the injection unit (122) and the first AC power signal generated by the injection unit (122), and detect the foreign object (112) within the first electromagnetic field based on a change in the parameter of at least one of the DC power signal and the first AC power signal across at least one of the array of coils (120).
    Type: Application
    Filed: April 17, 2019
    Publication date: March 18, 2021
    Inventors: Suma Memana Narayana Bhat, Deepak Aravind, Viswanathan Kanakasabai, Pradeep Vijayan, Adnan Kutubuddin Bohori
  • Publication number: 20210078426
    Abstract: A method (500) includes utilizing (502) a detection device comprising a detection mat having a plurality of detection coils, and at least one pair of groups of detection coils having a first group of detection coils and a second group of detection coils, and where the first group of detection coils includes a first impedance value, and a second group of detection coils includes a second impedance value. The method further includes determining (504) alignment parameters representative of electromagnetic coupling between at least one pair of groups of detection coils of the detection mat and an electromagnetic field generated by an apparatus coil, and comparing (506) the alignment parameters with a reference. The method also includes generating (508) a control signal indicative of an alignment position of the apparatus coil with respect to the detection mat based on the compared alignment parameters.
    Type: Application
    Filed: April 17, 2019
    Publication date: March 18, 2021
    Inventors: Suma Memana Narayana Bhat, Deepak Aravind, Viswanathan Kanakasabai, Adnan Kutubuddin Bohori