Patents by Inventor Adnan Ozekcin

Adnan Ozekcin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8561707
    Abstract: Provided are drill stem assemblies with ultra-low friction coatings for subterraneous drilling operations. In one form, the coated drill stem assemblies for subterraneous rotary drilling operations include a body assembly with an exposed outer surface including a drill string coupled to a bottom hole assembly, a coiled tubing coupled to a bottom hole assembly, or a casing string coupled to a bottom hole assembly and an ultra-low friction coating on at least a portion of the exposed outer surface of the body assembly, hardbanding on at least a portion of the exposed outer surface of the body assembly, an ultra-low friction coating on at least a portion of the hardbanding, wherein the ultra-low friction coating comprises one or more ultra-low friction layers, and one or more buttering layers interposed between the hardbanding and the ultra-low friction coating.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: October 22, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Hyun Woo Jin, Srinivasan Rajagopalan, Adnan Ozekcin, Tabassumul Haque, Mehmet Deniz Ertas, Bo Zhao, Jeffrey Roberts Bailey, Terris Field Walker
  • Patent number: 8286715
    Abstract: Provided are coated sleeved oil and gas well production devices and methods of making and using such coated sleeved devices. In one form, the coated sleeved oil and gas well production device includes an oil and gas well production device including one or more bodies and one or more sleeves proximal to the outer or inner surface of the one or more bodies, and a coating on at least a portion of the inner sleeve surface, outer sleeve surface, or a combination thereof, wherein the coating is chosen from an amorphous alloy, a heat-treated electroless or electro plated based nickel-phosphorous composite with a phosphorous content greater than 12 wt %, graphite, MoS2, WS2, a fullerene based composite, a boride based cermet, a quasicrystalline material, a diamond based material, diamond-like-carbon (DLC), boron nitride, and combinations thereof.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: October 16, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jeffrey Roberts Bailey, Erika Ann Ooten Biediger, Narasimha-Rao Venkata Bangaru, Swarupa Soma Bangaru, legal representative, Adnan Ozekcin, Hyun-Woo Jin, Mehmet Deniz Ertas, Raghavan Ayer, William Curtis Elks, Charles Shiao-Hsiung Yeh, Michael David Barry, Michael Thomas Hecker
  • Patent number: 8261841
    Abstract: Provided are coated oil and gas well production devices and methods of making and using such coated devices. In one form, the coated oil and gas well production device includes an oil and gas well production device including one or more bodies, and a coating on at least a portion of the one or more bodies, wherein the coating is chosen from an amorphous alloy, a heat-treated electroless or electro plated based nickel-phosphorous composite with a phosphorous content greater than 12 wt %, graphite, MoS2, WS2, a fullerene based composite, a boride based cermet, a quasicrystalline material, a diamond based material, diamond-like-carbon (DLC), boron nitride, and combinations thereof. The coated oil and gas well production devices may provide for reduced friction, wear, corrosion, erosion, and deposits for well construction, completion and production of oil and gas.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: September 11, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jeffrey Roberts Bailey, Erika Ann Ooten Biediger, Narasimha-Rao Venkata Bangaru, Swarupa Soma Bangaru, legal representative, Adnan Ozekcin, Hyun-Woo Jin, Charles Shiao-Hsiung Yeh, Michael D. Barry, Michael T. Hecker, Mehmet Deniz Ertas
  • Patent number: 8220563
    Abstract: Provided are drill stem assemblies with ultra-low friction coatings for subterraneous drilling operations. In one form, the coated drill stem assemblies for subterraneous rotary drilling operations include a body assembly with an exposed outer surface including a drill string coupled to a bottom hole assembly or a coiled tubing coupled to a bottom hole assembly and an ultra-low friction coating on at least a portion of the exposed outer surface of the body assembly, wherein the coefficient of friction of the ultra-low friction coating is less than or equal to 0.15. The coated drill stem assemblies disclosed herein provide for reduced friction, vibration (stick-slip and torsional), abrasion and wear during straight hole or directional drilling to allow for improved rates of penetration and enable ultra-extended reach drilling with existing top drives.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: July 17, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Narasimha-Rao Venkata Bangaru, Swarupa Soma Bangaru, legal representative, Adnan Ozekcin, Hyun-Woo Jin, Erika Ann Ooten Biediger, Jeffrey Roberts Bailey, Vishwas Gupta, Mehmet Deniz Ertas, William Curtis Elks, Jr.
  • Publication number: 20120125490
    Abstract: A steel composition and method from making a dual phase steel therefrom. The dual phase steel may have carbon of about 0.05% by weight to about 0.12 wt %; niobium of about 0.005 wt % to about 0.03 wt %; titanium of about 0.005 wt % to about 0.02 wt %; nitrogen of about 0.001 wt % to about 0.01 wt %; silicon of about 0.01 wt % to about 0.5 wt %; manganese of about 0.5 wt % to about 2.0 wt %; and a total of molybdenum, chromium, vanadium and copper less than about 0.15 wt %. The steel may have a first phase consisting of ferrite and a second phase having one or more of carbide, pearlite, martensite, lower bainite, granular bainite, upper bainite, and degenerate upper bainite. A solute carbon content in the first phase may be about 0.01 wt % or less.
    Type: Application
    Filed: January 30, 2012
    Publication date: May 24, 2012
    Inventors: Jayoung Koo, Swarupa Bangaru, Hyun-Woo Jin, Adnan Ozekcin, Raghavan Ayer, Douglas P. Fairchild, Danny L. Beeson, Douglas S. Hoyt, James B. LeBleu, JR., Shigeru Endo, Mitsuhiro Okatsu, Shinichi Kakihara, Moriyasu Nagae
  • Publication number: 20110220415
    Abstract: Provided are drill stem assemblies with ultra-low friction coatings for subterraneous drilling operations. In one form, the coated drill stem assemblies for subterraneous rotary drilling operations include a body assembly with an exposed outer surface including a drill string coupled to a bottom hole assembly, a coiled tubing coupled to a bottom hole assembly, or a casing string coupled to a bottom hole assembly and an ultra-low friction coating on at least a portion of the exposed outer surface of the body assembly, hardbanding on at least a portion of the exposed outer surface of the body assembly, an ultra-low friction coating on at least a portion of the hardbanding, wherein the ultra-low friction coating comprises one or more ultra-low friction layers, and one or more buttering layers interposed between the hardbanding and the ultra-low friction coating.
    Type: Application
    Filed: March 8, 2011
    Publication date: September 15, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Hyun Woo Jin, Srinivasan Rajagopalan, Adnan Ozekcin, Tabassumul Haque, Mehmet Deniz Ertas, Bo Zhao, Jeffrey Roberts Bailey, Terris Field Walker
  • Publication number: 20110220348
    Abstract: Provided are coated oil and gas well production devices and methods of making and using such coated devices. In one form, the coated device includes one or more cylindrical bodies, hardbanding on at least a portion of the exposed outer surface, exposed inner surface, or a combination of both exposed outer or inner surface of the one or more cylindrical bodies, and a coating on at least a portion of the inner surface, the outer surface, or a combination thereof of the one or more cylindrical bodies. The coating includes one or more ultra-low friction layers, and one or more buttering layers interposed between the hardbanding and the ultra-low friction coating. The coated oil and gas well production devices may provide for reduced friction, wear, erosion, corrosion, and deposits for well construction, completion and production of oil and gas.
    Type: Application
    Filed: March 30, 2011
    Publication date: September 15, 2011
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Hyun Woo Jin, Srinivasan Rajagopalan, Adnan Ozekcin, Tabassumul Haque, Mehmet Deniz Ertas, Bo Zhao, Jeffrey Roberts Bailey, Terris Field Walker
  • Publication number: 20110203791
    Abstract: Provided are coated sleeved oil and gas well production devices and methods of making and using such coated sleeved devices. In one form, the coated sleeved oil and gas well production device includes one or more cylindrical bodies, one or more sleeves proximal to the outer diameter or inner diameter of the one or more cylindrical bodies, hardbanding on at least a portion of the exposed outer surface, exposed inner surface, or a combination of both exposed outer or inner surface of the one or more sleeves, and a coating on at least a portion of the inner sleeve surface, the outer sleeve surface, or a combination thereof of the one or more sleeves. The coating includes one or more ultra-low friction layers, and one or more buttering layers interposed between the hardbanding and the ultra-low friction coating. The coated sleeved oil and gas well production devices may provide for reduced friction, wear, erosion, corrosion, and deposits for well construction, completion and production of oil and gas.
    Type: Application
    Filed: February 22, 2011
    Publication date: August 25, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Hyun Woo Jin, Srinivasan Rajagopalan, Adnan Ozekcin, Tabassumul Haque, Mehmet Deniz Ertas, Bo Zhao, Jeffrey Roberts Bailey, Terris Field Walker
  • Publication number: 20110042069
    Abstract: Provided are coated sleeved oil and gas well production devices and methods of making and using such coated sleeved devices. In one form, the coated sleeved oil and gas well production device includes an oil and gas well production device including one or more bodies and one or more sleeves proximal to the outer or inner surface of the one or more bodies, and a coating on at least a portion of the inner sleeve surface, outer sleeve surface, or a combination thereof, wherein the coating is chosen from an amorphous alloy, a heat-treated electroless or electro plated based nickel-phosphorous composite with a phosphorous content greater than 12 wt %, graphite, MoS2, WS2, a fullerene based composite, a boride based cermet, a quasicrystalline material, a diamond based material, diamond-like-carbon (DLC), boron nitride, and combinations thereof.
    Type: Application
    Filed: February 22, 2010
    Publication date: February 24, 2011
    Inventors: Jeffrey Roberts Bailey, Erika Ann Ooten Biediger, Narasimha-Rao Venkata Bangaru, Adnan Ozekcin, Hyun-Woo Jin, Mehmet Deniz Ertas, Raghavan Ayer, William Curtis Elks, Charles Shiao-Hsiung Yeh, Michael David Barry, Michael Thomas Hecker, Swarupa Soma Bangaru
  • Publication number: 20100206553
    Abstract: Provided are coated oil and gas well production devices and methods of making and using such coated devices. In one form, the coated oil and gas well production device includes an oil and gas well production device including one or more bodies, and a coating on at least a portion of the one or more bodies, wherein the coating is chosen from an amorphous alloy, a heat-treated electroless or electro plated based nickel-phosphorous composite with a phosphorous content greater than 12 wt %, graphite, MoS2, WS2, a fullerene based composite, a boride based cermet, a quasicrystalline material, a diamond based material, diamond-like-carbon (DLC), boron nitride, and combinations thereof. The coated oil and gas well production devices may provide for reduced friction, wear, corrosion, erosion, and deposits for well construction, completion and production of oil and gas.
    Type: Application
    Filed: August 18, 2009
    Publication date: August 19, 2010
    Inventors: Jeffrey Roberts Bailey, Erika Ann Ooten Biediger, Narasimha-Rao Venkata Bangaru, Adnan Ozekcin, Hyun-Woo Jin, Charles Shiao-Hsiung Yeh, Michael D. Barry, Michael T. Hecker, Mehmet Deniz Ertas, Swarupa Soma Bangaru
  • Publication number: 20100136369
    Abstract: Provided are steel structures methods of making such steel structures including structural steel components bonded by friction stir weldments with advantageous microstructures to yield improved weldment strength and weldment toughness. In one form of the present disclosure, the steel structure includes: two or more structural steel components produced by conventional melting or secondary refining practices and friction stir weldments bonding faying surfaces of the components together, wherein the chemistry and grain size of the starting structural steel satisfies one or more of the following criteria: a) 0.02 wt %<Ti+Nb<0.12 wt %, b) 0.7<Ti/N<3.5, c) 0.5 wt %<Mo+W+Cr+Cu+Co+Ni<1.75 wt %, d) 0.01 wt %<TiN+NbC+TiO/MgO<0.
    Type: Application
    Filed: November 17, 2009
    Publication date: June 3, 2010
    Inventors: Raghavan Ayer, Douglas Paul Fairchild, Steven Jeffrey Ford, Hyun-Woo Jin, Adnan Ozekcin
  • Publication number: 20100044110
    Abstract: Provided are drill stem assemblies with ultra-low friction coatings for subterraneous drilling operations. In one form, the coated drill stem assemblies for subterraneous rotary drilling operations include a body assembly with an exposed outer surface including a drill string coupled to a bottom hole assembly or a coiled tubing coupled to a bottom hole assembly and an ultra-low friction coating on at least a portion of the exposed outer surface of the body assembly, wherein the coefficient of friction of the ultra-low friction coating is less than or equal to 0.15. The coated drill stem assemblies disclosed herein provide for reduced friction, vibration (stick-slip and torsional), abrasion and wear during straight hole or directional drilling to allow for improved rates of penetration and enable ultra-extended reach drilling with existing top drives.
    Type: Application
    Filed: August 18, 2009
    Publication date: February 25, 2010
    Inventors: Narasimha-Rao V. Bangru, Adnan Ozekcin, Hyun-Woo Jin, Erika Ann Ooten Biediger, Jeffrey Roberts Bailey, Vishwas Gupta, Mehmet Deniz Ertas, William Curtis Elks, JR., Swarupa Soma Bangaru
  • Publication number: 20090301613
    Abstract: A steel composition and method from making a dual phase steel therefrom. The dual phase steel may have carbon of about 0.05% by weight to about 0.12 wt %; niobium of about 0.005 wt % to about 0.03 wt %; titanium of about 0.005 wt % to about 0.02 wt %; nitrogen of about 0.001 wt % to about 0.01 wt %; silicon of about 0.01 wt % to about 0.5 wt %; manganese of about 0.5 wt % to about 2.0 wt %; and a total of molybdenum, chromium, vanadium and copper less than about 0.15 wt %. The steel may have a first phase consisting of ferrite and a second phase having one or more of carbide, pearlite, martensite, lower bainite, granular bainite, upper bainite, and degenerate upper bainite. A solute carbon content in the first phase may be about 0.01 wt % or less.
    Type: Application
    Filed: April 6, 2009
    Publication date: December 10, 2009
    Inventors: Jayoung Koo, Swarupa Soma Bangaru, Hyun-Woo Jin, Adnan Ozekcin, Raghavan Ayer, Douglas P. Fairchild, Danny L. Beeson, Douglas S. Hoyt, James B. LeBleu, JR., Shigeru Endo, Mitsuhiro Okatsu, Shinichi Kakihara, Moriyasu Nagae
  • Publication number: 20070193666
    Abstract: A dual phase, high strength steel having a composite microstructure of soft and hard phases providing a low yield ratio, high strain capacity, superior weldability, and high toughness is provided. The dual phase steel includes from about 10% by volume to about 60% by volume of a first phase or constituent consisting essentially of fine-grained ferrite. The first phase has a ferrite mean grain size of about 5 microns or less. The dual phase steel further includes from about 40% by volume to about 90% by volume of a second phase or constituent comprising fine-grained martensite, fine-grained lower bainite, fine-grained granular bainite, fine-grained degenerate upper bainite, or any mixture thereof. Methods for making the same are also provided.
    Type: Application
    Filed: March 12, 2007
    Publication date: August 23, 2007
    Inventors: Hitoshi Asahi, Takuya Hara, Yoshio Terada, Masaaki Sugiyama, Narasimha-Rao Bangaru, Ja-Young Koo, Hyun-Woo Jin, Adnan Ozekcin, Douglas Fairchild
  • Patent number: 6942739
    Abstract: The present invention is directed to a process for producing pearlite from an iron containing article comprising the steps of, (a) heating an iron containing article comprising at least 50 wt % iron for a time and at a temperature sufficient to convert at least a portion of said iron from a ferritic structure to an austenitic structure, (b) exposing said austenitic structure, for a time sufficient and at a temperature of about 727 to about 900° C., to a carbon supersaturated environment to diffuse carbon into said austenitic structure and (c) cooling said iron containing article to form a continuous pearlite structure.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: September 13, 2005
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Changmin Chun, Trikur Anantharaman Ramanarayanan, James Dirickson Mumford, Adnan Ozekcin
  • Patent number: 6565678
    Abstract: Weld metals suitable for joining high strength, low alloy steels are provided. These weld metals have microstructures of acicular ferrite interspersed in a hard constituent, such as lath martensite, yield strengths of at least about 690 MPa (100 ksi), and DBTTs lower than about −50° C. (−58° F.) as measured by a Charpy energy versus temperature curve. These weld metals include about 0.04 wt % to about 0.08 wt % carbon; about 1.0 wt % to about 2.0 wt % manganese; about 0.2 wt % to about 0.7 wt % silicon; about 0.30 wt % to 0.80 wt % molybdenum; about 2.3 wt % to about 3.5 wt % nickel; about 0.0175 wt % to about 0.0400 wt % oxygen, and at least one additive selected from the group consisting of (i) up to about 0.04 wt % zirconium, and (ii) up to about 0.02 wt % titanium.
    Type: Grant
    Filed: August 2, 2001
    Date of Patent: May 20, 2003
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Douglas P. Fairchild, Jayoung Koo, Narasimha-Rao V. Bangaru, Mario Luis Macia, Danny Lee Beeson, Adnan Ozekcin
  • Publication number: 20030079806
    Abstract: The present invention is directed to a process for producing pearlite from an iron containing article comprising the steps of, (a) heating an iron containing article comprising at least 50 wt % iron for a time and at a temperature sufficient to convert at least a portion of said iron from a ferritic structure to an austenitic structure, (b) exposing said austenitic structure, for a time sufficient and at a temperature of about 727 to about 900° C., to a carbon supersaturated environment to diffuse carbon into said austenitic structure and (c) cooling said iron containing article to form a continuous pearlite structure.
    Type: Application
    Filed: October 26, 2001
    Publication date: May 1, 2003
    Inventors: Changmin Chun, Trikur Anantharaman Ramanarayanan, James Dirickson Mumford, Adnan Ozekcin
  • Publication number: 20020043305
    Abstract: Weld metals suitable for joining high strength, low alloy steels are provided. These weld metals have microstructures of acicular ferrite interspersed in a hard constituent, such as lath martensite, yield strengths of at least about 690 MPa (100 ksi), and DBTTs lower than about −50° C. (−58° F.) as measured by a Charpy energy versus temperature curve. These weld metals include about 0.04 wt % to about 0.08 wt % carbon; about 1.0 wt % to about 2.0 wt % manganese; about 0.2 wt % to about 0.7 wt % silicon; about 0.30 wt % to 0.80 wt % molybdenum; about 2.3 wt % to about 3.5 wt % nickel; about 0.0175 wt % to about 0.0400 wt % oxygen, and at least one additive selected from the group consisting of (i) up to about 0.04 wt % zirconium, and (ii) up to about 0.02 wt % titanium.
    Type: Application
    Filed: August 2, 2001
    Publication date: April 18, 2002
    Applicant: EXXONMOBIL UPSTREAM RESEARCH COMPANY
    Inventors: Douglas P. Fairchild, Jayoung Koo, Narasimha-Rao V. Bangaru, Mario Luis Macia, Danny Lee Beeson, Adnan Ozekcin
  • Patent number: 5869195
    Abstract: Corrosion of conventional refinery steels due to sulfur bearing, carboxylic acid containing hydrocarbon materials is minimized by forming on the surface of the steel a fine grain iron sulfide film where at least the steel surface is substantially all of a pearlite microstructure.
    Type: Grant
    Filed: January 3, 1997
    Date of Patent: February 9, 1999
    Assignee: Exxon Research and Engineering Company
    Inventors: Trikur A. Ramanarayanan, Adnan Ozekcin
  • Patent number: 5520751
    Abstract: The present invention is a process for forming protective films on an alloy substrate by: oxidizing an alloy comprising iron and chromium in an oxygen containing atmosphere, said alloy containing from about 5 to about 15 wt % chromium, at a temperature of from about 200.degree. C. (473.degree. K.) to about 1400.degree. C. (1673.degree. K.), more preferably 300.degree. C. (573.degree. K.) to 600.degree. C. (873.degree. K.) wherein the partial pressure of oxygen in said oxygen containing atmosphere is above or equal to the dissociation pressure of Fe.sub.3 O.sub.4 and FeO below or equal to the dissociation pressure of Fe.sub.2 O.sub.3 within the specified temperature range, and for a time sufficient to effect the formation of a film comprising iron-chromium oxide (FeCr.sub.2 O.sub.4) spinel on the surface of said alloy. In a further embodiment, the film may additionally contain Silicon.
    Type: Grant
    Filed: August 23, 1994
    Date of Patent: May 28, 1996
    Assignee: Exxon Research and Engineering Company
    Inventors: Vinod K. Pareek, Trikur A. Ramanarayanan, James D. Mumford, Adnan Ozekcin