Patents by Inventor Adrian Mark Thomas

Adrian Mark Thomas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11899084
    Abstract: A magnetic resonance imaging device may include a field generator for generating at least one magnetic gradient field. The field generator may include a first magnet and a second magnet confining an imaging volume of the magnetic resonance imaging device in two spatial directions. The first magnet and the second magnet may be arranged asymmetrically with respect to the imaging volume. The magnetic resonance imaging device may be used to perform a method for acquiring an image of a diagnostically relevant body region of a patient.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: February 13, 2024
    Assignee: Siemens Healthcare GmbH
    Inventors: Michael Mallett, Adrian Mark Thomas, Matthias Gebhardt, Stephan Biber, Andreas Krug, Stefan Popescu, Lars Lauer, Andreas Greiser
  • Publication number: 20240004009
    Abstract: The disclosure relates to a magnetic resonance imaging device comprising a main magnet, a gradient system including at least one gradient coil, a thermal bus structure, a shield structure arranged between the gradient system and the main magnet and a cryocooler including a cold head, wherein the shield structure is configured to reduce a transport of heat energy to the main magnet and wherein the main magnet comprises a magnet spacer configured for spacing individual coils of the main magnet, wherein the thermal bus structure comprises at least one thermal bus element extending through the magnet spacer for providing a thermal connection between the cold head of the cryocooler and the shield structure.
    Type: Application
    Filed: June 29, 2023
    Publication date: January 4, 2024
    Applicant: Siemens Healthcare Limited
    Inventors: Adrian Mark Thomas, Simon Chorley, Nicholas Aley
  • Patent number: 11852703
    Abstract: A magnetic resonance imaging device having a field generation unit configured to provide a magnetic field in an imaging volume of the magnetic resonance imaging device. The field generation unit has at least one magnet. A surface of the field generation unit directed towards the imaging volume of the at least one magnet has a concave shape, wherein a direction of access to the imaging volume is oriented essentially perpendicular to a main direction of magnetic field lines in the imaging volume.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: December 26, 2023
    Assignee: Siemens Healthcare GmbH
    Inventors: Michael Mallett, Adrian Mark Thomas, Stefan Popescu, Andreas Krug, Matthias Gebhardt, Stephan Biber, Andreas Greiser
  • Patent number: 11714148
    Abstract: A split cylindrical superconducting magnet system including two half magnets, each half magnet comprising superconducting magnet coils retained in an outer vacuum chamber, having a thermal radiation shield located between the magnet coils and the outer vacuum chamber, wherein the thermal radiation shield is shaped such that the axial spacing between thermal radiation shields of respective half magnets is greater at their internal diameter than at their outer diameter.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: August 1, 2023
    Assignee: Siemens Healthcare Limited
    Inventor: Adrian Mark Thomas
  • Patent number: 11675034
    Abstract: A magnetic resonance imaging system comprises a field generation unit and a supporting structure for providing structural support for the field generation unit, wherein the field generation unit comprises at least one magnet for generating a B0 magnetic field and an opening configured to provide access to an imaging volume positioned in the B0 magnetic field along at least one direction and wherein the at least one direction is angled with respect to a main direction of magnetic field lines of the B0 magnetic field in the imaging volume.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: June 13, 2023
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventors: Michael Mallett, Stefan Popescu, Adrian Mark Thomas, Stephan Biber, Matthias Gebhardt, Thorsten Speckner, Thomas Beck, Andreas Greiser
  • Patent number: 11675035
    Abstract: An electromagnet for a Magnetic Resonance Imaging (MRI) apparatus. The electromagnet includes a coil configured to generate a magnetic field. The coil has a first axially outer surface, and a support element configured to mount the coil in the MRI. The support element is bonded to the first axially outer surface of the coil.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: June 13, 2023
    Assignee: Siemens Healthcare Limited
    Inventors: Michael John Disney Mallett, Jonathan Noys, Adrian Mark Thomas
  • Patent number: 11609292
    Abstract: A device for NMR spectroscopy includes a magnet arrangement, configured to produce a magnetic probe field within a magnet field of view external to the magnet arrangement. In a embodiment, the device includes a coil arrangement, configured to generate an electromagnetic excitation field within a coil field of view and a controller, configured to control the coil arrangement. The device includes a magnet adjustment arrangement, configured and arranged to modify at least one parameter of the magnet arrangement to change a spatial position of the magnet field of view.
    Type: Grant
    Filed: April 7, 2021
    Date of Patent: March 21, 2023
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventors: Andre De Oliveira, Andreas Greiser, Peter Speier, Adrian Mark Thomas
  • Publication number: 20230003816
    Abstract: A magnetic resonance imaging device having a field generation unit configured to provide a magnetic field in an imaging volume of the magnetic resonance imaging device. The field generation unit has at least one magnet. A surface of the field generation unit directed towards the imaging volume of the at least one magnet has a concave shape, wherein a direction of access to the imaging volume is oriented essentially perpendicular to a main direction of magnetic field lines in the imaging volume.
    Type: Application
    Filed: June 29, 2022
    Publication date: January 5, 2023
    Inventors: Michael Mallett, Adrian Mark Thomas, Stefan Popescu, Andreas Krug, Matthias Gebhardt, Stephan Biber, Andreas Greiser
  • Patent number: 11464469
    Abstract: A medical imaging system a magnet unit includes a main magnet and a first housing. In an embodiment, the main magnet is arranged inside the first housing and includes coil elements and at least one coil carrier, the magnet unit defining an examination opening. The first radiation unit is embodied to irradiate the examination object and is arranged on the side of the magnet unit. The magnet unit includes a first region, transparent to radiation emitted by the first radiation unit radially to the examination axis. The first radiation unit is embodied to emit radiation through the first region of the magnet unit in a direction of the examination opening and is furthermore embodied to rotate about the examination opening.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: October 11, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Rebecca Fahrig, Martino Leghissa, Simon James Calvert, Adrian Mark Thomas
  • Publication number: 20220308142
    Abstract: A magnetic resonance imaging device may include a field generator for generating at least one magnetic gradient field. The field generator may include a first magnet and a second magnet confining an imaging volume of the magnetic resonance imaging device in two spatial directions. The first magnet and the second magnet may be arranged asymmetrically with respect to the imaging volume. The magnetic resonance imaging device may be used to perform a method for acquiring an image of a diagnostically relevant body region of a patient.
    Type: Application
    Filed: March 28, 2022
    Publication date: September 29, 2022
    Inventors: Michael Mallett, Adrian Mark Thomas, Matthias Gebhardt, Stephan Biber, Andreas Krug, Stefan Popescu, Lars Lauer, Andreas Greiser
  • Publication number: 20220187396
    Abstract: An electromagnet for a Magnetic Resonance Imaging (MRI) apparatus. The electromagnet includes a coil configured to generate a magnetic field. The coil has a first axially outer surface, and a support element configured to mount the coil in the MRI. The support element is bonded to the first axially outer surface of the coil.
    Type: Application
    Filed: April 2, 2019
    Publication date: June 16, 2022
    Applicant: Siemens Healthcare Limited
    Inventors: Michael John Disney Mallett, Jonathan Noys, Adrian Mark Thomas
  • Publication number: 20210341556
    Abstract: At least one example embodiment provides a magnetic resonance imaging system comprising a field generation unit and a supporting structure for providing structural support for the field generation unit, wherein the field generation unit comprises at least one magnet for generating a B0 magnetic field and an opening configured to provide access to an imaging volume positioned in the B0 magnetic field along at least one direction and wherein the at least one direction is angled with respect to a main direction of magnetic field lines of the B0 magnetic field in the imaging volume.
    Type: Application
    Filed: May 3, 2021
    Publication date: November 4, 2021
    Applicant: Siemens Healthcare GmbH
    Inventors: Michael MALLETT, Stefan POPESCU, Adrian Mark THOMAS, Stephan BIBER, Matthias GEBHARDT, Thorsten SPECKNER, Thomas BECK, Andreas GREISER
  • Publication number: 20210318402
    Abstract: A device for NMR spectroscopy includes a magnet arrangement, configured to produce a magnetic probe field within a magnet field of view external to the magnet arrangement. In a embodiment, the device includes a coil arrangement, configured to generate an electromagnetic excitation field within a coil field of view and a controller, configured to control the coil arrangement. The device includes a magnet adjustment arrangement, configured and arranged to modify at least one parameter of the magnet arrangement to change a spatial position of the magnet field of view.
    Type: Application
    Filed: April 7, 2021
    Publication date: October 14, 2021
    Applicant: Siemens Healthcare GmbH
    Inventors: Andre DE OLIVEIRA, Andreas GREISER, Peter SPEIER, Adrian Mark THOMAS
  • Publication number: 20200200847
    Abstract: A split cylindrical superconducting magnet system including two half magnets, each half magnet comprising superconducting magnet coils retained in an outer vacuum chamber, having a thermal radiation shield located between the magnet coils and the outer vacuum chamber, wherein the thermal radiation shield is shaped such that the axial spacing between thermal radiation shields of respective half magnets is greater at their internal diameter than at their outer diameter.
    Type: Application
    Filed: December 20, 2019
    Publication date: June 25, 2020
    Applicant: Siemens Healthcare Limited
    Inventor: Adrian Mark Thomas
  • Publication number: 20190274649
    Abstract: A medical imaging system a magnet unit includes a main magnet and a first housing. In an embodiment, the main magnet is arranged inside the first housing and includes coil elements and at least one coil carrier, the magnet unit defining an examination opening. The first radiation unit is embodied to irradiate the examination object and is arranged on the side of the magnet unit. The magnet unit includes a first region, transparent to radiation emitted by the first radiation unit radially to the examination axis. The first radiation unit is embodied to emit radiation through the first region of the magnet unit in a direction of the examination opening and is furthermore embodied to rotate about the examination opening.
    Type: Application
    Filed: April 25, 2017
    Publication date: September 12, 2019
    Applicant: Siemens Healthcare GmbH
    Inventors: Rebecca FAHRIG, Martino LEGHISSA, Simon James CALVERT, Adrian Mark THOMAS
  • Patent number: 9741480
    Abstract: A mechanically operating superconducting switch has two superconducting wires, a respective end of each superconducting wire being embedded in a respective block of superconducting material. A mechanical arrangement is provided for driving respective contact surfaces of the blocks into physical contact with each other, and for separating those services.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: August 22, 2017
    Assignee: Siemens Healthcare Limited
    Inventors: M'Hamed Lakrimi, Adrian Mark Thomas
  • Patent number: 9733482
    Abstract: A wearable display apparatus includes a display for providing viewable images. A display support assembly can support the display. The display support assembly can be self centering and telescoping for adjusting the position of the display for viewing by a user. The display support assembly can include right side and left side arm members spaced apart from each other, and a flexibly resilient support member to which the display is mounted between the arm members. The support member can be telescopically mounted to the arm members. The support member can have flexibly resilient right and left side portions secured to the display. Each side portion can be slidably mounted to a respective arm member for telescoping.
    Type: Grant
    Filed: January 7, 2014
    Date of Patent: August 15, 2017
    Assignee: Kopin Corporation
    Inventors: Adrian Mark Thomas West, Zachary Jarrod Traina, Junggeun Tak, Thomas Gerard Parent
  • Patent number: 9378870
    Abstract: A superconducting joint and a cooling surface are provided as a combination. The superconducting joint joins superconducting wires each comprising superconducting filaments electrically joined together. The cooling surface comprises a thermally and electrically conductive material. An electrically isolating surface coating is provided on the cooling surface. The superconducting joint, the surface coating and the cooling surface are in thermal contact. The superconducting joint is electrically isolated from the cooling surface by the surface coating. The tails of the superconducting wires are wrapped around the electrically isolating surface coating.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: June 28, 2016
    Assignee: Siemens PLC
    Inventors: M'hamed Lakrimi, Jonathan Noys, Michael Simpkins, Adrian Mark Thomas
  • Publication number: 20160086693
    Abstract: A superconducting joint and a cooling surface are provided as a combination. The superconducting joint joins superconducting wires each comprising superconducting filaments electrically joined together. The cooling surface comprises a thermally and electrically conductive material. An electrically isolating surface coating is provided on the cooling surface. The superconducting joint, the surface coating and the cooling surface are in thermal contact. The superconducting joint is electrically isolated from the cooling surface by the surface coating. The tails of the superconducting wires are wrapped around the electrically isolating surface coating.
    Type: Application
    Filed: December 2, 2015
    Publication date: March 24, 2016
    Applicant: Siemens PLC
    Inventors: M'hamed Lakrimi, Jonathan Noys, Michael Simpkins, Adrian Mark Thomas
  • Patent number: 9251933
    Abstract: A superconducting joint and a cooling surface are provided as a combination. The superconducting joint joins superconducting wires each comprising superconducting filaments electrically joined together. The cooling surface comprises a thermally and electrically conductive material. An electrically isolating surface coating is provided on the cooling surface. The superconducting joint, the surface coating and the cooling surface are in thermal contact. The superconducting joint is electrically isolated from the cooling surface by the surface coating. The tails of the superconducting wires are wrapped around the electrically isolating surface coating.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: February 2, 2016
    Assignee: Siemens PLC
    Inventors: M'Hamed Lakrimi, Jonathan Noys, Michael Simpkins, Adrian Mark Thomas