Patents by Inventor Adriana S. Silva

Adriana S. Silva has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11952480
    Abstract: In some embodiments, the present disclosure provides a composition comprising 1) about 97.5 wt % to about 99.9 wt % of a first polyethylene having a density of about 0.91 g/cm3 to about 0.94 g/cm3, and a melt strength of about 10 mN or greater; and 2) about 0.1 wt % to about 2.5 wt % of a second polyethylene having an Mw of about 500,000 g/mol or more. In some embodiments, the composition is a film. In some embodiments, the present disclosure provides a method of making a composition comprising blending a first polyethylene of any embodiment described herein and a second polyethylene of any embodiment described herein.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: April 9, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Johannes M. Soulages, Arnold Lustiger, Thomas T. Sun, Pamela J. Wright, Madhavi Vadlamudi, Alexander I. Norman, Adriana S. Silva, David M. Fiscus, Timothy D. Shaffer
  • Patent number: 11787881
    Abstract: A polyethylene composition having from about 0.5 to about 20 wt % of alpha-olefin derived units other than ethylene-derived units, with the balance including ethylene-derived units, total internal unsaturations (Vy1+Vy2+T1) of from about 0.15 to about 0.40 per 1000 carbon atoms, an MI of from about 0.1 to about 6 g/10 min, an HLM1 of from about 5.0 to about 40 g/10 min, a density of from about 0.890 to about 0.940 g/ml, a Tw1-Tw2 value of from about ?50 to about ?23° C., an Mw1/Mw2 value of from about 2.0 to about 3.5, an Mw/Mn of from about 4.5 to about 12, an Mz/Mw of from about 2.5 to about 3.0, an Mz/Mn of from about 15 to about 25, and a g?(vis) greater than 0.90.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: October 17, 2023
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Adriana S. Silva, Dongming Li, Ching-Tai Lue, Matthew W. Holtcamp, Subramaniam Kuppuswamy, David F. Sanders, Matthew S. Bedoya, Laughlin G. McCullough
  • Publication number: 20230022904
    Abstract: A polyethylene comprising of ethylene derived units and 0.5 wt % to 10 wt % C3 to C12 ?-olefin derived units may be synthesized using a mixed catalyst that comprises rac-dimethylsilylbis(tetrahydroindenyl)zirconium dichloride and a zirconium co-catalyst in a mole ratio of 50:50 to 90:10, and wherein the zirconium co-catalyst is a poor comonomer incorporator as compared to the rac-dimethylsilylbis(tetrahydroindenyl)zirconium dichloride catalyst. Such a polyethylene may have a density of 0.91 g/cm3 to 0.93 g/cm3, an I2 value of 0.5 g/10 min to 2 g/10 min, an I21 value of 25 g/10 min to 75 g/10 min, an I21/I2 ratio of 25 to 75, a molar reversed-co-monomer index (RCI,m) of 30 to 180, a phase angle equal or lower than 70° at complex modulus G* of 10,000 Pa, a ?2 of 1.5 radians to ?1.5 radians, and a low density population of 50% and 70% by weight of the polyethylene.
    Type: Application
    Filed: November 18, 2020
    Publication date: January 26, 2023
    Inventors: Matthew W. HOLTCAMP, Matthew S. BEDOYA, Timothy M. BOLLER, Hasnain RANGWALLA, David F. SANDERS, Ching-Tai LUE, Dongming LI, Adriana S. SILVA, Ru XIE, Joseph A. MOEBUS
  • Patent number: 11274196
    Abstract: A polyethylene composition comprising from about 0.5 to about 20 wt % of alpha-olefin derived units other than ethylene-derived units, with the balance including ethylene-derived units, total internal unsaturations (Vy1+Vy2+T1) of from about 0.10 to about 0.40 per 1000 carbon atoms, an MI of from about 0.1 to about 6 g/10 min, an HLMI of from about 5.0 to about 40 g/10 min, a density of from about 0.890 to about 0.940 g/ml, a Tw1-Tw2 value of from about ?25 to about ?20° C., an Mw1/Mw2 value of from about 1.2 to about 2.0, an Mw/Mn of from about 4.5 to about 12, an Mz/Mw of from about 2.0 to about 3.0, an Mz/Mn of from about 7.0 to about 20, and a g?(vis) greater than 0.90.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: March 15, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Dongming Li, Ching-Tai Lue, Adriana S. Silva, Matthew W. Holtcamp, Laughlin G. McCullough, David F. Sanders, Matthew S. Bedoya
  • Publication number: 20220033536
    Abstract: In an embodiment, a method for producing a polyolefin is provided. The method includes: contacting a first composition and a second composition in a line to form a third composition, wherein: the first composition comprises a contact product of a first catalyst, a second catalyst, a support, and a diluent, wherein the mol ratio of second catalyst to first catalyst is from 60:40 to 40:60, the second composition comprises a contact product of the second catalyst and a second diluent; introducing the third composition from the line into a gas-phase fluidized bed reactor; exposing the third composition to polymerization conditions; and obtaining a polyolefin.
    Type: Application
    Filed: October 30, 2019
    Publication date: February 3, 2022
    Inventors: Kevin A. Stevens, David F. Sanders, Matthew W. Holtcamp, Charles J. Harlan, Xuan Ye, Adriana S. Silva, Matthew S. Bedoya, Joshua P. Olson
  • Publication number: 20220033537
    Abstract: In an embodiment, a method for producing a polyolefin includes contacting a first composition and a second composition in in a line to form a third composition, wherein: the first composition comprises a contact product of a first catalyst, a second catalyst, a support, a first activator, and a diluent, wherein the mol ratio of second catalyst to first catalyst is from 60:40 to 40:60, the second composition comprises a contact product of the third catalyst, a second activator, and a second diluent, and the third composition comprises a mol ratio of the third catalyst to the second catalyst to the first catalyst of from 10:35:55 to 60:15:25, such as 30:20:30; introducing the third composition from the line into a gas-phase fluidized bed reactor; exposing the third composition to polymerization conditions; and obtaining a polyolefin.
    Type: Application
    Filed: October 30, 2019
    Publication date: February 3, 2022
    Inventors: Kevin A. Stevens, David F. Sanders, Matthew W. Holtcamp, Charles J. Harlan, Xuan Ye, Adriana S. Silva, Matthew S. Bedoya, Joshua P. Olson
  • Publication number: 20220033535
    Abstract: The present disclosure provides processes for polymerizing olefin(s). In at least one embodiment, a method for producing a polyolefin is provided. The method includes contacting a first composition and a second composition in a line to form a third composition. The first composition includes a contact product of a first catalyst, a second catalyst, a support, a first activator, and a diluent, and the mol ratio of first catalyst to second catalyst is from 90:10 to 40:60. The second composition includes a contact product of the second catalyst, a second activator, and a second diluent. The third composition includes a mol ratio of first catalyst to second catalyst of from 89:11 to 10:90. The method includes introducing the third composition from the line into a gas-phase fluidized bed reactor, exposing the third composition to polymerization conditions, and obtaining a polyolefin.
    Type: Application
    Filed: October 30, 2019
    Publication date: February 3, 2022
    Inventors: Kevin A. Stevens, David F. Sanders, Matthew W. Holtcamp, Charles J. Harlan, Xuan Ye, Adriana S. Silva, Matthew S. Bedoya, Joshua P. Olson
  • Publication number: 20220025135
    Abstract: Films produced with polyethylene blends having improved stiffness and heat sealing are provided herein. The films may have an average MD/TD 1% secant modulus greater than or equal to about 3300 psi. The films may also have a heat seal initiation temperature at 5 N of less than or equal to about 95° C. or a hot tack seal initiation temperature at 1 N of less than or equal to about 95° C.
    Type: Application
    Filed: November 13, 2019
    Publication date: January 27, 2022
    Inventors: Ching-Tai LUE, Dongming LI, Matthew F. YOTT, Arturo LEYVA, Adriana S. SILVA, Matthew W. HOLTCAMP, Ryan W. IMPELMAN, Richard E. PEQUENO, Laughlin G. MCCULLOUGH, Hasnain RANGWALLA, James M. FARLEY
  • Publication number: 20210371632
    Abstract: In some embodiments, the present disclosure provides a composition comprising 1) about 97.5 wt % to about 99.9 wt % of a first polyethylene having a density of about 0.91 g/cm3 to about 0.94 g/cm3, and a melt strength of about 10 mN or greater; and 2) about 0.1 wt % to about 2.5 wt % of a second polyethylene having an Mw of about 500,000 g/mol or more. In some embodiments, the composition is a film. In some embodiments, the present disclosure provides a method of making a composition comprising blending a first polyethylene of any embodiment described herein and a second polyethylene of any embodiment described herein.
    Type: Application
    Filed: February 5, 2019
    Publication date: December 2, 2021
    Inventors: Johannes M. Soulages, Arnold Lustiger, Thomas T. Sun, Pamela J. Wright, Madhavi Vadlamudi, Alexander I. Norman, Adriana S. Silva, David M. Fiscus, Timothy D. Shaffer
  • Patent number: 10934376
    Abstract: Provided herein are polyethylene compositions with broad orthogonal composition distribution. The polyethylene compositions may comprise at least 65 wt % ethylene-derived units and from 0 to 35 wt % of C3 to C12 olefin comonomer-derived units, and furthermore may exhibit a reversed comonomer index (RCI,m) of 100 kg/mol or greater, a Tw1-Tw2 value of from ?16 to ?38° C., and an Mw1/Mw2 value of at least 0.9, such as 0.9 to 4. Also provided are processes for making the polyethylene compositions, as well as films made from the polyethylene compositions. Such films may feature superior film stiffness for a given polyethylene composition density, and accordingly such films in some embodiments have average MD/TD modulus and density satisfying the following equation: Avg. Modulus?1.2*(C1*Density?C2), where C1 and C2 are constants, such as C1=2,065,292 and C2=1,872,345.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: March 2, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Dongming Li, Matthew W. Holtcamp, Ching-Tai Lue, Adriana S. Silva, David F. Sanders, Subramaniam Kuppuswamy, Matthew S. Bedoya
  • Patent number: 10927203
    Abstract: Polyethylene compositions including at least 65 wt % ethylene derived units and from 0 to 35 wt % of C3-C12 olefin comonomer derived units, based upon the total weight of the polyethylene composition are provided. The polyethylene compositions have a) an RCI,m of 100 kg/mol or greater and one or both of: b) a Tw1-Tw2 value of from ?16 to ?38° C.; and c) an Mw1/Mw2 value of at least 0.9. The polyethylene compositions may be used to manufacture articles such as films.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: February 23, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Ching-Tai Lue, Adriana S. Silva, Matthew W. Holtcamp, David F. Sanders, Ryan W. Impelman, Richard E. Pequeno, Charles J. Harlan, Xuan Ye, Dongming Li, Rohan A. Hule, Matthew S. Bedoya
  • Patent number: 10927202
    Abstract: Polyethylene compositions including at least 65 wt % ethylene derived units and from 0 to 35 wt % of C3-C12 olefin comonomer derived units, based upon the total weight of the polyethylene composition are provided. The polyethylene compositions have a) an RCI,m of 100 kg/mol or greater and one or both of: b) a Tw1-Tw2 value of from ?16 to ?38° C.; and c) an Mw1/Mw2 value of at least 0.9. The polyethylene compositions may be used to manufacture articles such as films.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: February 23, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Ching-Tai Lue, Adriana S. Silva, Matthew W. Holtcamp, David F. Sanders, Ryan W. Impelman, Richard E. Pequeno, Charles J. Harlan, Xuan Ye, Dongming Li, Matthew S. Bedoya
  • Patent number: 10899860
    Abstract: The present disclosure provides processes for polymerizing olefin(s). Methods can include contacting a first composition and a second composition in a line to form a third composition. The first composition can include a contact product of a first catalyst, a second catalyst, a support, a first activator, a mineral oil. The second composition can include a contact product of an activator, a diluent, and the first catalyst or the second catalyst. Methods can include introducing the third composition from the line into a gas-phase fluidized bed reactor, introducing a condensing agent to the line and/or the reactor, exposing the third composition to polymerization conditions, and/or obtaining a polyolefin. Polyethylene compositions including at least 65 wt % ethylene derived units, based upon the total weight of the polyethylene composition, are provided.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: January 26, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Adriana S. Silva, Matthew W. Holtcamp, Ryan W. Impelman, Richard E. Pequeno, Kevin A. Stevens, Charles J. Harlan, Xuan Ye
  • Patent number: 10822434
    Abstract: Catalyst systems including more than one metallocene catalysts and processes for using the same are provided to produce polyolefin polymers such as polyethylene polymers.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: November 3, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Matthew W. Holtcamp, Dongming Li, Ching-Tai Lue, Adriana S. Silva, David F. Sanders, Laughlin G. McCullough, Matthew S. Bedoya, Subramaniam Kuppuswamy
  • Patent number: 10808053
    Abstract: Polyethylene compositions including at least 65 wt % ethylene derived units, based upon the total weight of the polyethylene composition, are provided.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: October 20, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Dongming Li, Ching-Tai Lue, Adriana S. Silva, Matthew W. Holtcamp, David F. Sanders, Laughlin G. McCullough, Matthew S. Bedoya, Subramaniam Kuppuswamy
  • Publication number: 20200231790
    Abstract: A polyethylene composition comprising from about 0.5 to about 20 wt % of alpha-olefin derived units other than ethylene-derived units, with the balance including ethylene-derived units, total internal unsaturations (Vy1+Vy2+T1) of from about 0.10 to about 0.40 per 1000 carbon atoms, an MI of from about 0.1 to about 6 g/10 min, an HLMI of from about 5.0 to about 40 g/10 min, a density of from about 0.890 to about 0.940 g/ml, a Tw1-Tw2 value of from about ?25 to about ?20° C., an Mw1/Mw2 value of from about 1.2 to about 2.0, an Mw/Mn of from about 4.5 to about 12, an Mz/Mw of from about 2.0 to about 3.0, an Mz/Mn of from about 7.0 to about 20, and a g?(vis) greater than 0.90.
    Type: Application
    Filed: June 22, 2018
    Publication date: July 23, 2020
    Inventors: Dongming Li, Ching-Tai Lue, Adriana S. Silva, Matthew W. Holtcamp, Laughlin G. McCullough, David F. Sanders, Matthew S. Bedoya
  • Patent number: 10611867
    Abstract: A polyethylene useful for a film including ethylene derived units and within a range from 0.5 to 20 wt % of C3 to C12 ?-olefin derived units, an I2 value within a range from 0.5 to 20 g/10 min, an I21 value within a range from 5 to 100 g/10 min, the polyethylene formed from a process comprising combining a bridged bis-cyclopentadienyl Group 4 metal catalyst, an unbridged bis-cyclopentadienyl Group 4 metal catalyst, and an activator with ethylene and within a range from 0.1 to 5 wt %, relative to the weight of all monomers, of a C3 to C12 ?-olefin at a temperature within a range from 60 to 100° C.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: April 7, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Matthew W. Holtcamp, Ching-Tai Lue, Adriana S. Silva, Dongming Li, David M. Fiscus
  • Publication number: 20200071436
    Abstract: The present disclosure provides processes for polymerizing olefin(s). Methods can include contacting a first composition and a second composition in a line to form a third composition. The first composition can include a contact product of a first catalyst, a second catalyst, a support, a first activator, a mineral oil. The second composition can include a contact product of an activator, a diluent, and the first catalyst or the second catalyst. Methods can include introducing the third composition from the line into a gas-phase fluidized bed reactor, introducing a condensing agent to the line and/or the reactor, exposing the third composition to polymerization conditions, and/or obtaining a polyolefin. Polyethylene compositions including at least 65 wt % ethylene derived units, based upon the total weight of the polyethylene composition, are provided.
    Type: Application
    Filed: November 29, 2018
    Publication date: March 5, 2020
    Inventors: Adriana S. Silva, Matthew W. Holtcamp, Ryan W. Impelman, Richard E. Pequeno, Kevin A. Stevens, Charles J. Harlan, Xuan Ye
  • Patent number: 10563027
    Abstract: A method of forming a finished film comprising extruding a molten polyethylene comprising a diene terpolymer modifier through a die opening to form a film, wherein the diene-terpolymer modifier is a terpolymer comprising ethylene-derived units, C3 to C10 ?-olefin derived units, and diene-derived units; causing the film to progress in a direction away from the die opening; cooling the film at a distance from the die opening, the distance adjusted to allow relaxation of the molten polyethylene prior to solidification and/or crystallization upon cooling; and isolating a finished film therefrom. Desirably, the polyethylene is a linear low density polyethylene, and the die and cooling is suitable for forming a blown film.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: February 18, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jianya Cheng, Adriana S. Silva, Peijun Jiang, Wen Li, Alexander I. Norman
  • Patent number: 10562219
    Abstract: A method of forming a blown film comprising extruding a molten composition through a die opening to form a film; wherein the molten composition comprises at least one polyethylene and within the range from 0.10 wt % to 10 wt % of a cyclic-diene terpolymer by weight of the composition; causing the film to progress in a direction away from the die opening; cooling the film at a distance from the die opening, the distance adjusted to effect the properties of the film; and isolating a blown film therefrom.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: February 18, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Periagaram S. Ravishankar, Jianya Cheng, Adriana S. Silva, Wen Li, Abdelhadi Sahnoune, Arturo Leyva, Alexander I. Norman