Patents by Inventor Aiko Shiga

Aiko Shiga has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7105048
    Abstract: Each region, which should be left on a substrate after patterning, of a semiconductor film is grasped in accordance with a mask. Then, each region to be scanned with laser light is determined so that at least the region to be obtained through the patterning is crystallized, and a beam spot is made to hit the region to be scanned, thereby partially crystallizing the semiconductor film. Each portion with low output energy of the beam spot is shielded by a slit. In the present invention, the laser light is not scanned and irradiated onto the entire surface of the semiconductor film but is scanned such that at least each indispensable portion is crystallized to a minimum. With the construction described above, it becomes possible to save time taken to irradiate the laser light onto each portion to be removed through the patterning after the crystallization of the semiconductor film.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: September 12, 2006
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hisashi Ohtani, Masaaki Hiroki, Koichiro Tanaka, Aiko Shiga, Satoshi Murakami, Mai Akiba
  • Patent number: 7087504
    Abstract: A technique for manufacturing TFTs having little dispersion in their electrical characteristics is provided. Contamination of a semiconductor film is reduced by performing oxidation processing having an organic matter removing effect, forming a clean oxide film, after removing a natural oxide film formed on a semiconductor film surface. TFTs having little dispersion in their electrical characteristics can be obtained by using the semiconductor film thus obtained in active layers of the TFTs, and the electrical properties can be improved. In addition, deterioration in productivity and throughput can be reduced to a minimum by using a semiconductor manufacturing apparatus of the present invention.
    Type: Grant
    Filed: April 29, 2002
    Date of Patent: August 8, 2006
    Assignees: Semiconductor Energy Laboratory Co., Ltd., Sharp Kabushiki Kaisha
    Inventors: Setsuo Nakajima, Aiko Shiga, Naoki Makita, Takuya Matsuo
  • Publication number: 20060155413
    Abstract: Providing a semiconductor fabricating apparatus using a laser crystallization technique for enhancing the processing efficiency for substrate and for increasing the mobility of a semiconductor film. The semiconductor fabricating apparatus of multi-chamber system includes a film formation equipment for forming a semiconductor film, and a laser irradiation equipment. The laser irradiation equipment includes first means for controlling a laser irradiation position relative to an irradiation object, second means (laser oscillator) for emitting laser light, third means (optical system) for processing or converging the laser light, and fourth means for controlling the oscillation of the second means and for controlling the first means in a manner that a beam spot of the laser light processed by the third means may cover a place determined based on data on a mask configuration (pattern information).
    Type: Application
    Filed: March 8, 2006
    Publication date: July 13, 2006
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hisashi Ohtani, Masaaki Hiroki, Koichiro Tanaka, Aiko Shiga, Mai Akiba
  • Publication number: 20060134886
    Abstract: Island-like semiconductor films and markers are formed prior to laser irradiation. Markers are used as positional references so as not to perform laser irradiation all over the semiconductor within a substrate surface, but to perform a minimum crystallization on at least indispensable portion. Since the time required for laser crystallization can be reduced, it is possible to increase the substrate processing speed. By applying the above-described constitution to a conventional SLS method, a means for solving such problem in the conventional SLS method that the substrate processing efficiency is insufficient, is provided.
    Type: Application
    Filed: February 16, 2006
    Publication date: June 22, 2006
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Akihisa Shimomura, Hisashi Ohtani, Masaaki Hiroki, Koichiro Tanaka, Aiko Shiga, Mai Akiba, Kenji Kasahara
  • Patent number: 7050878
    Abstract: Providing a semiconductor fabricating apparatus using a laser crystallization technique for enhancing the processing efficiency for substrate and for increasing the mobility of a semiconductor film. The semiconductor fabricating apparatus of multi-chamber system includes a film formation equipment for forming a semiconductor film, and a laser irradiation equipment. The laser irradiation equipment includes first means for controlling a laser irradiation position relative to an irradiation object, second means (laser oscillator) for emitting laser light, third means (optical system) for processing or converging the laser light, and fourth means for controlling the oscillation of the second means and for controlling the first means in a manner that a beam spot of the laser light processed by the third means may cover a place determined based on data on a mask configuration (pattern information).
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: May 23, 2006
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hisashi Ohtani, Masaaki Hiroki, Koichiro Tanaka, Aiko Shiga, Mai Akiba
  • Patent number: 7037809
    Abstract: The present invention provides a semiconductor device manufacturing method where a beam spot is formed by having respective beam spots of a plurality of laser lights overlap each other on a semiconductor film using an optical system. Crystallinity, in a region determined by pattern information, is enhanced by scanning the beam spot to form an island-like semiconductor film based on the pattern information.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: May 2, 2006
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hisashi Ohtani, Masaaki Hiroki, Koichiro Tanaka, Aiko Shiga, Mai Akiba
  • Publication number: 20060079041
    Abstract: Position control of a crystal grain in accordance with an arrangement of a TFT is achieved, and at the same time, a processing speed during a crystallization process is increased. More specifically, there is provided a manufacturing method for a semiconductor device, in which crystal having a large grain size can be continuously formed through super lateral growth that is artificially controlled and substrate processing efficiency during a laser crystallization process can be increased. In the manufacturing method for a semiconductor device, instead of performing laser irradiation on an entire semiconductor film within a substrate surface, a marker as a reference for positioning is formed so as to crystallize at least an indispensable portion at minimum. Thus, a time period required for laser crystallization can be reduced to make it possible to increase a processing speed for a substrate.
    Type: Application
    Filed: November 23, 2005
    Publication date: April 13, 2006
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Akihisa Shimomura, Hisashi Ohtani, Masaaki Hiroki, Koichiro Tanaka, Aiko Shiga, Mai Akiba, Kenji Kasahara
  • Patent number: 7015079
    Abstract: By adding a novel improvement to the technique disclosed in JP 8-78329 A, a manufacturing method in which film characteristics of a semiconductor film having a crystalline structure are improved is provided. In addition, a TFT having superior TFT characteristics, such as field effect mobility, which uses the semiconductor film as an active layer, and a method of manufacturing the TFT, are also provided. A metallic element which promotes the crystallization of silicon is added to a semiconductor film having an amorphous structure and an oxygen concentration within the film of less than 5×1018/cm3. The semiconductor film having an amorphous structure is then heat-treated, forming a semiconductor film having a crystalline structure. Subsequently, an oxide film on the surface is removed. Oxygen is introduced to the semiconductor film having a crystalline structure, and processing is performed such that the concentration of oxygen within the film is from 5×1018/cm3 to 1×1021/cm3.
    Type: Grant
    Filed: February 5, 2004
    Date of Patent: March 21, 2006
    Assignees: Semiconductor Energy Laboratory Co., Ltd., Sharp Kabushiki Kaisha
    Inventors: Hidekazu Miyairi, Aiko Shiga, Katsumi Nomura, Naoki Makita, Takuya Matsuo
  • Publication number: 20060009015
    Abstract: A technique for manufacturing TFTs having little dispersion in their electrical characteristics is provided. Contamination of a semiconductor film is reduced by performing oxidation processing having an organic matter removing effect, forming a clean oxide film, after removing a natural oxide film formed on a semiconductor film surface. TFTs having little dispersion in their electrical characteristics can be obtained by using the semiconductor film thus obtained in active layers of the TFTs, and the electrical properties can be improved. In addition, deterioration in productivity and throughput can be reduced to a minimum by using a semiconductor manufacturing apparatus of the present invention.
    Type: Application
    Filed: September 9, 2005
    Publication date: January 12, 2006
    Applicants: Semiconductor Energy Laboratory Co., Ltd., Sharp Kabushiki Kaisha
    Inventors: Setsuo Nakajima, Aiko Shiga, Naoki Makita, Takuya Matsuo
  • Patent number: 6979605
    Abstract: Position control of a crystal grain in accordance with an arrangement of a TFT is achieved, and at the same time, a processing speed during a crystallization process is increased. More specifically, there is provided a manufacturing method for a semiconductor device, in which crystal having a large grain size can be continuously formed through super lateral growth that is artificially controlled and substrate processing efficiency during a laser crystallization process can be increased. In the manufacturing method for a semiconductor device, instead of performing laser irradiation on an entire semiconductor film within a substrate surface, a marker as a reference for positioning is formed so as to crystallize at least an indispensable portion at minimum. Thus, a time period required for laser crystallization can be reduced to make it possible to increase a processing speed for a substrate.
    Type: Grant
    Filed: November 29, 2002
    Date of Patent: December 27, 2005
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Akihisa Shimomura, Hisashi Ohtani, Masaaki Hiroki, Koichiro Tanaka, Aiko Shiga, Mai Akiba, Kenji Kasahara
  • Publication number: 20050277028
    Abstract: Provided are a laser apparatus of continuous oscillation that is capable of enhancing the efficiency of substrate processing, a laser irradiation method, and a manufacturing method for a semiconductor device using the laser apparatus. A portion of a semiconductor film that should be left on a substrate after patterning is grasped in accordance with a mask. Then, a portion to be scanned with a laser light is determined so that it is possible to crystallize at least the portion to be obtained through the patterning. Also, a beam spot is made to strike the portion to be scanned. As a result, the semiconductor film is partially crystallized. That is, with the present invention, the laser light is not scanned and irradiated onto the entire surface of a semiconductor film but is scanned so that at least an indispensable portion is crystallized.
    Type: Application
    Filed: July 21, 2005
    Publication date: December 15, 2005
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei Yamazaki, Hisashi Ohtani, Masaaki Hiroki, Koichiro Tanaka, Aiko Shiga, Mai Akiba
  • Patent number: 6962860
    Abstract: To provide a continuous-oscillating laser apparatus capable of improving the efficiency of substrate treatment, a method of irradiating a laser beam, and a method of manufacturing a semiconductor device using the laser apparatus. Of the entire semiconductor film, a portion that needs to be left on the substrate after patterning is identified according to a mask. Then, a portion to be scanned by respective lasers are defined, so that a laser beam is irradiated twice in different scanning directions to a portion to be obtained at least through patterning and beam spots are impinged upon the scanned portion, thereby partially crystallizing the semiconductor film. In other words, in the invention, it is arranged in such a manner that a laser beam is not irradiated by scanning a laser beam across the entire semiconductor film but by scanning a laser beam twice at least to the absolutely necessary portion.
    Type: Grant
    Filed: November 7, 2002
    Date of Patent: November 8, 2005
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hisashi Ohtani, Masaaki Hiroki, Koichiro Tanaka, Aiko Shiga, Akihisa Shimomura, Mai Akiba
  • Publication number: 20050245007
    Abstract: A method for manufacturing a semiconductor device having steps of forming an amorphous semiconductor on a substrate having an insulating surface; patterning the amorphous semiconductor to form plural first island-like semiconductors; irradiating a linearly condensed laser beam on the plural first island-like semiconductors while relatively scanning the substrate, thus crystallizing the plural first island-like semiconductors; patterning the plural first island-like semiconductors that have been crystallized to form plural second island-like semiconductors; forming plural transistors using the plural second island-like semiconductors; and forming a unit circuit using a predetermined number of the transistors, where the second island-like semiconductors used for the predetermined number of the transistors are formed from the first island-like semiconductors that are different from each other.
    Type: Application
    Filed: June 23, 2005
    Publication date: November 3, 2005
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Munehiro Azami, Chiho Kokubo, Aiko Shiga, Atsuo Isobe, Hiroshi Shibata, Shunpei Yamazaki
  • Patent number: 6911358
    Abstract: A method for manufacturing a semiconductor device having steps of forming an amorphous semiconductor on a substrate having an insulating surface; patterning the amorphous semiconductor to form plural first island-like semiconductors; irradiating a linearly condensed laser beam on the plural first island-like semiconductors while relatively scanning the substrate, thus crystallizing the plural first island-like semiconductors; patterning the plural first island-like semiconductors that have been crystallized to form plural second island-like semiconductors; forming plural transistors using the plural second island-like semiconductors; and forming a unit circuit using a predetermined number of the transistors, where the second island-like semiconductors used for the predetermined number of the transistors are formed from the first island-like semiconductors that are different from each other.
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: June 28, 2005
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Munehiro Azami, Chiho Kokubo, Aiko Shiga, Atsuo Isobe, Hiroshi Shibata, Shunpei Yamazaki
  • Publication number: 20050040412
    Abstract: To provide a method of efficiently configuring a circuit requiring high inter-device consistency by using thin-film transistors. A semiconductor layer is formed on a substrate and is patterned into desired shapes to form first semiconductor islands. The first semiconductor islands are uniformly crystallized by laser irradiation within the surface areas thereof. Thereafter, the semiconductor layers are patterned into desired shapes to become active layers of the thin-film transistors layer. Active layers of all of thin-film transistors constituting one unitary circuit are formed of one of the first semiconductor islands in this case. Thus, the TFTs mutually realize high consistency.
    Type: Application
    Filed: September 16, 2004
    Publication date: February 24, 2005
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Chiho Kokubo, Aiko Shiga, Yoshifumi Tanada, Shunpei Yamazaki
  • Patent number: 6844523
    Abstract: To provide a continuous oscillation laser apparatus, and a manufacturing method of a semiconductor device using the continuous oscillation laser apparatus, which can enhance processing efficiency. A laser apparatus according to the present invention includes: a laser oscillation apparatus; a unit for rotating an object to be processed; a unit for moving the object to be processed toward a center of the rotation or toward an outside from the center; and an optical system for processing a laser light outputted from the laser oscillation apparatus and irradiating the processed laser light to a definite region in a moving range of the object to be processed, in which, while the object to be processed is rotated, the object to be processed is moved toward the center of the rotation or toward the outside from the center to move a position where the definite region and the object to be processed overlap.
    Type: Grant
    Filed: September 6, 2002
    Date of Patent: January 18, 2005
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Koichiro Tanaka, Hidekazu Miyairi, Aiko Shiga, Akihisa Shimomura
  • Publication number: 20050009251
    Abstract: Island-like semiconductor films and markers are formed prior to laser irradiation. Markers are used as positional references so as not to perform laser irradiation all over the semiconductor within a substrate surface, but to perform a minimum crystallization on at least indispensable portion. Since the time required for laser crystallization can be reduced, it is possible to increase the substrate processing speed. By applying the above-described constitution to a conventional SLS method, a means for solving such problem in the conventional SLS method that the substrate processing efficiency is insufficient, is provided.
    Type: Application
    Filed: July 2, 2004
    Publication date: January 13, 2005
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Akihisa Shimomura, Hisashi Ohtani, Masaaki Hiroki, Koichiro Tanaka, Aiko Shiga, Mai Akiba, Kenji Kasahara
  • Publication number: 20040248347
    Abstract: A laser beam irradiation method that achieves uniform crystallization, even if a film thickness of an a-Si film or the like fluctuates, is provided. The present invention provides a laser beam irradiation method in which a non-single crystal semiconductor film is formed on a substrate having an insulating surface and a laser beam having a wavelength longer than 350 nm is irradiated to the non-single crystal semiconductor film, thus crystallizing the non-single crystal silicon film. The non-single crystal semiconductor film has a film thickness distribution within the surface of the substrate, and a differential coefficient of a laser beam absorptivity with respect to the film thickness of the non-single crystal semiconductor film is positive.
    Type: Application
    Filed: July 6, 2004
    Publication date: December 9, 2004
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Kenji Kasahara, Aiko Shiga, Hidekazu Miyairi, Koichiro Tanaka, Koji Dairiki
  • Patent number: 6797550
    Abstract: To provide a method of efficiently configuring a circuit requiring high inter-device consistency by using thin-film transistors. A semiconductor layer is formed on a substrate and is patterned into desired shapes to form first semiconductor islands. The first semiconductor islands are uniformly crystallized by laser irradiation within the surface areas thereof. Thereafter, the semiconductor layers are patterned into desired shapes to become active layers of the thin-film transistors layer. Active layers of all of thin-film transistors constituting one unitary circuit are formed of one of the first semiconductor islands in this case. Thus, the TFTs mutually realize high consistency.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: September 28, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Chiho Kokubo, Aiko Shiga, Yoshifumi Tanada, Shunpei Yamazaki
  • Patent number: 6777713
    Abstract: By adding a novel improvement to the technique disclosed in JP 8-78329 A, a manufacturing method in which film characteristics of a semiconductor film having a crystalline structure are improved is provided. In addition, a TFT having superior TFT characteristics, such as field effect mobility, which uses the semiconductor film as an active layer, and a method of manufacturing the TFT, are also provided. A metallic element which promotes the crystallization of silicon is added to a semiconductor film having an amorphous structure and an oxygen concentration within the film of less than 5×1018/cm3. The semiconductor film having an amorphous structure is then heat-treated, forming a semiconductor film having a crystalline structure. Subsequently, an oxide film on the surface is removed. Oxygen is introduced to the semiconductor film having a crystalline structure, and processing is performed such that the concentration of oxygen within the film is from 5×1018/cm3 to 1×1021/cm3.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: August 17, 2004
    Assignees: Semiconductor Energy Laboratory Co., Ltd., Sharp Kabushiki Kaisha
    Inventors: Hidekazu Miyairi, Aiko Shiga, Katsumi Nomura, Naoki Makita, Takuya Matsuo