Patents by Inventor Aixin Wang

Aixin Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240078384
    Abstract: The present application discloses a method of training a sentiment preference recognition model for comment information, a recognition method and device thereof, which belong to the field of natural language processing technology. The method of training a sentiment preference recognition model for comment information includes training and optimizing, based on each piece of comment information, and corresponding original text template and mirrored text template thereof, a sentiment preference recognition model in the original channel and the mirror channel, so that the sentiment preference recognition model is used to output a sentiment preference result for the two comparison objects in the comment information in terms of the attribute.
    Type: Application
    Filed: April 21, 2023
    Publication date: March 7, 2024
    Inventors: Yequan WANG, Hengran ZHANG, Aixin SUN
  • Patent number: 11858846
    Abstract: The present invention discloses a glass with high refractive index for fiber optic imaging elements with medium-expansion and fabrication method therefor, the glass comprising the following components in percentage by weight: SiO2 5-9%, Al2O3 0-1%, B2O3 23-28%, CaO 0-3%, BaO 6-12%, La2O3 30-34%, Nb2O5 4-8%, Ta2O5 0-1%, Y2O3 0-1%, ZnO 4-9%, TiO2 4-8%, ZrO2 4-6%, SnO2 0-1%. The present invention further provides a fabrication method for the glass with a high refractive index, comprising: putting raw materials quartz sand, aluminum hydroxide, boric acid or boric anhydride, calcium carbonate, barium carbonate or barium nitrate, lanthanum oxide, niobium oxide, tantalum oxide, yttrium oxide, zinc oxide, titanium dioxide, zirconium oxide and stannic oxide, etc. into a platinum crucible according to the requirement of dosing, melting at a high temperature, cooling and fining, leaking and casting to form a glass rod, and then annealing, cooling and chilling the molded glass rod.
    Type: Grant
    Filed: January 29, 2022
    Date of Patent: January 2, 2024
    Assignee: China Building Materials Academy
    Inventors: Lei Zhang, Zhenbo Cao, Jinsheng Jia, Yun Wang, Yue Zhao, Xian Zhang, Xiaofeng Tang, Yu Shi, Jing Zhang, Zhiheng Fan, Huichao Xu, Haoyang Yu, Puguang Song, Aixin Wang, Changhua Hong
  • Patent number: 11802071
    Abstract: A fiber optic imaging element includes medium-expansion and a fabrication method including: (1) matching a core glass rod with a cladding glass tube to perform mono fiber drawing; (2) arranging the mono fibers into a mono fiber bundle rod, and then drawing the mono fiber bundle rod into a multi fiber; (3) arranging the multi fiber into a multi fiber bundle rod, and then drawing the multi fiber bundle rod into a multi-multi fiber; (4) cutting the multi-multi fiber, and then arranging the multi-multi fiber into a fiber assembly buddle, then putting the fiber assembly buddle into a mold of heat press fusion process, and performing the heat press fusion process to prepare a block of the fiber optic imaging element with medium-expansion; and (5) edged rounding, cutting and slicing, face grinding and polishing the prepared medium-expansion block into a billet.
    Type: Grant
    Filed: January 29, 2022
    Date of Patent: October 31, 2023
    Assignee: China Building Materials Academy
    Inventors: Lei Zhang, Zhenbo Cao, Jinsheng Jia, Yun Wang, Yue Zhao, Xian Zhang, Xiaofeng Tang, Yu Shi, Jing Zhang, Zhiheng Fan, Huichao Xu, Haoyang Yu, Puguang Song, Aixin Wang, Changhua Hong
  • Publication number: 20230242436
    Abstract: The present invention discloses a glass with high refractive index for fiber optic imaging elements with medium-expansion and fabrication method therefor, the glass comprising the following components in percentage by weight: SiO2 5-9%, Al2O3 0-1%, B2O3 23-28%, CaO 0-3%, BaO 6-12%, La2O3 30-34%, Nb2O5 4-8%, Ta2O5 0-1%, Y2O3 0-1%, ZnO 4-9%, TiO2 4-8%, ZrO2 4-6%, SnO2 0-1%. The present invention further provides a fabrication method for the glass with a high refractive index, comprising: putting raw materials quartz sand, aluminum hydroxide, boric acid or boric anhydride, calcium carbonate, barium carbonate or barium nitrate, lanthanum oxide, niobium oxide, tantalum oxide, yttrium oxide, zinc oxide, titanium dioxide, zirconium oxide and stannic oxide, etc. into a platinum crucible according to the requirement of dosing, melting at a high temperature, cooling and fining, leaking and casting to form a glass rod, and then annealing, cooling and chilling the molded glass rod.
    Type: Application
    Filed: January 29, 2022
    Publication date: August 3, 2023
    Inventors: Lei Zhang, Zhenbo Cao, Jinsheng Jia, Yun Wang, Yue Zhao, Xian Zhang, Xiaofeng Tang, Yu Shi, Jing Zhang, Zhiheng Fan, Huichao Xu, Haoyang Yu, Puguang Song, Aixin Wang, Changhua Hong
  • Publication number: 20230212058
    Abstract: A fiber optic imaging element includes medium-expansion and a fabrication method including: (1) matching a core glass rod with a cladding glass tube to perform mono fiber drawing; (2) arranging the mono fibers into a mono fiber bundle rod, and then drawing the mono fiber bundle rod into a multi fiber; (3) arranging the multi fiber into a multi fiber bundle rod, and then drawing the multi fiber bundle rod into a multi-multi fiber; (4) cutting the multi-multi fiber, and then arranging the multi-multi fiber into a fiber assembly buddle, then putting the fiber assembly buddle into a mold of heat press fusion process, and performing the heat press fusion process to prepare a block of the fiber optic imaging element with medium-expansion; and (5) edged rounding, cutting and slicing,
    Type: Application
    Filed: January 29, 2022
    Publication date: July 6, 2023
    Inventors: Lei Zhang, Zhenbo Cao, Jinsheng Jia, Yun Wang, Yue Zhao, Xian Zhang, Xiaofeng Tang, Yu Shi, Jing Zhang, Zhiheng Fan, Huichao Xu, Haoyang Yu, Puguang Song, Aixin Wang, Changhua Hong