Patents by Inventor Ajay Kumar Behera

Ajay Kumar Behera has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11953034
    Abstract: A method for monitoring health of a hydraulic fluid subsystem is presented. The method includes determining a plurality of forces acting on an actuator of the hydraulic fluid subsystem, determining a plurality of parameters based on at least one of an actuator inlet flow rate, an actuator outlet flow rate, and the plurality of forces acting on the actuator, receiving a valve inlet pressure of at least one of oil and gas flowing through a pipe while entering a valve operationally coupled to the actuator and a valve outlet pressure of the at least one of the oil and the gas flowing through the pipe while flowing out of the valve, and monitoring the health of the hydraulic fluid subsystem based on at least one of the plurality of parameters, the valve inlet pressure, and the valve outlet pressure.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: April 9, 2024
    Assignee: Baker Hughes Energy Technology UK Limited
    Inventors: Ajay Kumar Behera, Bhasker Rao Keely, Nicholas Josep Ellson, Andrew Clarke
  • Patent number: 11578816
    Abstract: A method for monitoring health of a valve is presented. The method includes receiving an acoustic emission signal from a sensing device operatively coupled to the valve, selecting a region of interest signal in the acoustic emission signal, determining a plurality of current parameters based on the region of interest signal, and monitoring the health of the valve based on at least the plurality of current parameters, wherein the region of interest signal comprises acoustic emission data generated from initiation of an opening of the valve until the valve is partially opened.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: February 14, 2023
    Assignee: VETCO GRAY SCANDINAVIA AS
    Inventors: Bhasker Rao Keely, Aninda Bhattacharya, Ajay Kumar Behera, Shivanand Bhavikatti, Christopher Taylor Herman, Sudipta Mal
  • Publication number: 20200149655
    Abstract: A method for monitoring health of a valve is presented. The method includes receiving an acoustic emission signal from a sensing device operatively coupled to the valve, selecting a region of interest signal in the acoustic emission signal, determining a plurality of current parameters based on the region of interest signal, and monitoring the health of the valve based on at least the plurality of current parameters, wherein the region of interest signal comprises acoustic emission data generated from initiation of an opening of the valve until the valve is partially opened.
    Type: Application
    Filed: April 6, 2018
    Publication date: May 14, 2020
    Applicant: General Electric Company
    Inventors: Bhasker Rao Keely, Aninda Bhattacharya, Ajay Kumar Behera, Shivanand Bhavikatti, Christopher Taylor Herman, Sudipta Mal
  • Publication number: 20190211851
    Abstract: A method for monitoring health of a hydraulic fluid subsystem is presented. The method includes determining a plurality of forces acting on an actuator of the hydraulic fluid subsystem, determining a plurality of parameters based on at least one of an actuator inlet flow rate, an actuator outlet flow rate, and the plurality of forces acting on the actuator, receiving a valve inlet pressure of at least one of oil and gas flowing through a pipe while entering a valve operationally coupled to the actuator and a valve outlet pressure of the at least one of the oil and the gas flowing through the pipe while flowing out of the valve, and monitoring the health of the hydraulic fluid subsystem based on at least one of the plurality of parameters, the valve inlet pressure, and the valve outlet pressure.
    Type: Application
    Filed: May 3, 2017
    Publication date: July 11, 2019
    Inventors: Ajay Kumar BEHERA, Bhasker Rao KEELY, Nicholas Josep ELLSON, Andrew CLARKE
  • Patent number: 10227937
    Abstract: Various methods and systems are provided for detecting a change in turbocharger performance. In one example, a method comprises determining a level of turbocharger imbalance based on output from a turbine speed sensor and generating a signal related to a change in a performance level of the turbocharger if the level of turbocharger imbalance is greater than a threshold.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: March 12, 2019
    Assignee: GE Global Sourcing LLC
    Inventors: Aninda Bhattacharya, Bret Dwayne Worden, Ajay Kumar Behera, Mahesh Panicker, Wrichik Basu, Matthew John Malone, Arwa Hatim Ginwala
  • Patent number: 9657588
    Abstract: A system for monitoring health of a rotor is presented. The system includes a processing subsystem that generates a measurement matrix based upon a plurality of resonant-frequency first delta times of arrival vectors corresponding to a blade and a first sensing device, and a plurality of resonant-frequency second delta times of arrival vectors corresponding to the blade and a second sensing device, generates a resonant matrix based upon the measurement matrix such that entries in the resonant matrix are substantially linearly uncorrelated and linearly independent, and generates a resonance signal using a first subset of the entries of the resonant matrix, wherein the resonance signal substantially comprises common observations and components of the plurality of resonant-frequency first delta times of arrival vectors and the plurality of resonant-frequency second delta times of arrival vectors.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: May 23, 2017
    Assignee: General Electric Company
    Inventors: Mahesh Raveendranatha Panicker, Ajay Kumar Behera, Venkatesh Rajagopalan, Venkatarao Ryali, Vivek Venugopal Badami, Budhaditya Hazra
  • Publication number: 20170122230
    Abstract: Various methods and systems are provided for detecting a change in turbocharger performance. In one example, a method comprises determining a level of turbocharger imbalance based on output from a turbine speed sensor and generating a signal related to a change in a performance level of the turbocharger if the level of turbocharger imbalance is greater than a threshold.
    Type: Application
    Filed: November 4, 2015
    Publication date: May 4, 2017
    Inventors: Aninda Bhattacharya, Bret Dwayne Worden, Ajay Kumar Behera, Mahesh Panicker, Wrichik Basu, Matthew John Malone, Arwa Hatim Ginwala
  • Patent number: 9477224
    Abstract: An embodiment of a method for lifespan modeling for a turbine engine component includes determining a design-phase model of the lifespan of an turbine engine component; fusing the design-phase model with sensor data collected during operation of the turbine engine component to produce an updated model of the lifespan of the turbine engine component; and fusing the updated model with data collected during an inspection of the turbine engine component to produce an overall model of the lifespan of the turbine engine component. Systems for lifespan modeling for a turbine engine component are also provided.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: October 25, 2016
    Assignee: General Electric Company
    Inventors: Khan Mohamed Khirullah Genghis Khan, Mohamed Ahmed Ali, Ali Osman Ayhan, Ajay Kumar Behera, Anne Marie Isburgh, Vinay Bhaskar Jammu, John Joseph Madelone, Jr., Omprakash Velagandula
  • Patent number: 9250056
    Abstract: A method is presented. The method includes the steps of generating rotation signals corresponding to a plurality of rotations of a rotor physically coupled to a plurality of blades, and determining peak voltages corresponding to the plurality of blades by applying time synchronous averaging technique to blade passing signals using the rotation signals, wherein the peak voltages are representative of clearances of the plurality of blades.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: February 2, 2016
    Assignee: General Electric Company
    Inventors: Prashanth D'Souza, Vivek Venugopal Badami, Rahul Srinivas Prabhu, Mahalakshmi Shunmugam Balasubramaniam, Ajay Kumar Behera, Aninda Bhattacharya, Venkatesh Rajagopalan
  • Patent number: 9250153
    Abstract: A system is disclosed. The system includes a processing subsystem that determines preliminary voltages corresponding to a plurality of blades based upon blade passing signals (BPS), and generates a plurality of clearance values by normalizing the preliminary voltages for effects of one or more operational parameters, wherein the plurality of clearance values are representative of clearance of the plurality of blades.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: February 2, 2016
    Assignee: General Electric Company
    Inventors: Rahul Srinivas Prabhu, Mahalakshmi Shunmugam Balasubramaniam, Ajay Kumar Behera, Aninda Bhattacharya, Venkatesh Rajagopalan, Prashanth D'Souza, Vivek Venugopal Badami
  • Publication number: 20150184533
    Abstract: A system for monitoring health of a rotor is presented. The system includes a processing subsystem that generates a plurality of frequency peak values corresponding to two or more respective windows of signals by iteratively shifting the two or more respective windows of signals along delta times of arrival signals corresponding to a blade in the rotor, determines one or more resonant-frequency rotor speeds ranges of the blade by identifying rotor speeds corresponding to a subset of the plurality of frequency peak values, and monitors the blade to determine a presence of one or more defects in the blade during the resonant-frequency rotor speeds regions.
    Type: Application
    Filed: December 26, 2013
    Publication date: July 2, 2015
    Applicant: General Electric Company
    Inventors: Mahesh Raveendranatha Panicker, Ajay Kumar Behera, Venkatesh Rajagopalan, Venkatarao Ryali, Vivek Venugopal Badami, Budhaditya Hazra
  • Publication number: 20150184536
    Abstract: A system for monitoring health of a rotor is presented. The system includes a processing subsystem that generates a measurement matrix based upon a plurality of resonant-frequency first delta times of arrival vectors corresponding to a blade and a first sensing device, and a plurality of resonant-frequency second delta times of arrival vectors corresponding to the blade and a second sensing device, generates a resonant matrix based upon the measurement matrix such that entries in the resonant matrix are substantially linearly uncorrelated and linearly independent, and generates a resonance signal using a first subset of the entries of the resonant matrix, wherein the resonance signal substantially comprises common observations and components of the plurality of resonant-frequency first delta times of arrival vectors and the plurality of resonant-frequency second delta times of arrival vectors.
    Type: Application
    Filed: December 26, 2013
    Publication date: July 2, 2015
    Applicant: General Electric Company
    Inventors: Mahesh Raveendranatha Panicker, Ajay Kumar Behera, Venkatesh Rajagopalan, Venkatarao Ryali, Vivek Venugopal Badami, Budhaditya Hazra
  • Publication number: 20140188430
    Abstract: A method is presented. The method includes the steps of generating rotation signals corresponding to a plurality of rotations of a rotor physically coupled to a plurality of blades, and determining peak voltages corresponding to the plurality of blades by applying time synchronous averaging technique to blade passing signals using the rotation signals, wherein the peak voltages are representative of clearances of the plurality of blades.
    Type: Application
    Filed: December 31, 2012
    Publication date: July 3, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Prashanth D'Souza, Vivek Venugopal Badami, Rahul Srinivas Prabhu, Mahalakshmi Shunmugam Balasubramaniam, Ajay Kumar Behera, Aninda Bhattacharya, Venkatesh Rajagopalan
  • Patent number: 8718953
    Abstract: A method for monitoring the health of one or more blades is presented. The method includes the steps of generating a signal representative of delta times of arrival corresponding to the rotating blade, generating a reconstructed signal by decomposing the signal representative of the delta times of arrival utilizing a multi-resolution analysis technique, wherein the reconstructed signal is representative of at least one of static deflection and dynamic deflection in the rotating blade.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: May 6, 2014
    Assignee: General Electric Company
    Inventors: Venkatesh Rajagopalan, Vivek Venugopal Badami, Rahul Srinivas Prabhu, Ajay Kumar Behera, Aninda Bhattacharya
  • Publication number: 20140119889
    Abstract: A system is disclosed. The system includes a processing subsystem that determines preliminary voltages corresponding to a plurality of blades based upon blade passing signals (BPS), and generates a plurality of clearance values by normalizing the preliminary voltages for effects of one or more operational parameters, wherein the plurality of clearance values are representative of clearance of the plurality of blades.
    Type: Application
    Filed: October 31, 2012
    Publication date: May 1, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Rahul Srinivas Prabhu, Mahalakshmi Shunmugam Balasubramaniam, Ajay Kumar Behera, Aninda Bhattacharya, Venkatesh Rajagopalan, Prashanth D'Souza, Vivek Venugopal Badami
  • Patent number: 8676514
    Abstract: A method for monitoring the health of a plurality of blades is presented. The method includes determining delta TOAs corresponding to the plurality of blades, determining a standard deviation utilizing the delta TOAs corresponding to the plurality of blades, determining a delta sigma—1 utilizing the standard deviation and an initial standard deviation, determining a normalized delta TOA corresponding to one or more of the plurality of blades utilizing the delta sigma—1, determining a standard deviation of the normalized delta TOA, determining a delta sigma—2 utilizing the standard deviation of the normalized delta TOA and a previous standard deviation of normalized delta TOA, and determining a corrected delta TOA corresponding to the one or more of the plurality of blades based upon the delta sigma—2.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: March 18, 2014
    Assignee: General Electric Company
    Inventors: Venkatesh Rajagopalan, Vivek Venugopal Badami, Rahul Srinivas Prabhu, Ajay Kumar Behera, Aninda Bhattacharya
  • Patent number: 8543341
    Abstract: A method for monitoring the health of one or more blades is presented. The method includes the steps of determining a delta TOA corresponding to each of the one or more blades based upon respective actual time of arrival (TOA) of the one or more blades, determining a normalized delta TOA corresponding to each of the one or more blades by removing effects of one or more operational data from the delta TOA, and determining a corrected delta TOA corresponding to each of the one or more blades by removing effects of reseating of the one or more blades from the normalized delta TOA.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: September 24, 2013
    Assignee: General Electric Company
    Inventors: Venkatesh Rajagopalan, Vivek Venugopal Badami, Rahul Srinivas Prabhu, Ajay Kumar Behera, Aninda Bhattacharya
  • Patent number: 8532939
    Abstract: A system is presented. The system includes a data acquisition system that generates time of arrival (TOA) data corresponding to a plurality of blades in a device, a central processing subsystem that determines features of each of the plurality of blades utilizing the TOA data, and evaluates the health of each of the plurality of blades based upon the determined features.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: September 10, 2013
    Assignee: General Electric Company
    Inventors: Aninda Bhattacharya, Vinay Bhaskar Jammu, Vivek Venugopal Badami, Venkatesh Rajagopalan, Rahul Srinivas Prabhu, Ajay Kumar Behera, Nidhi Naithani, Mahalakshmi Shunumugam Balasubramaniam
  • Publication number: 20130082833
    Abstract: A method for monitoring health of airfoils is disclosed. The method comprises generating at least one feature alarm for a blade by fusing a plurality of features corresponding to the blade utilizing a fuzzy inference method. The fuzzy inference method comprises generating a plurality of intermediate values by fusing one or more combinations of the plurality of features utilizing a fuzzy logic method, and fusing the plurality of intermediate values utilizing a second level fuzzy logic method, wherein the at least one feature alarm is representative of the health of the blade.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Aninda Bhattacharya, Vivek Venugopal Badami, Rahul Srinivas Prabhu, Ajay Kumar Behera, Venkatesh Rajagopalan
  • Publication number: 20120278004
    Abstract: A method for monitoring the health of one or more blades is presented. The method includes the steps of generating a signal representative of delta times of arrival corresponding to the rotating blade, generating a reconstructed signal by decomposing the signal representative of the delta times of arrival utilizing a multi-resolution analysis technique, wherein the reconstructed signal is representative of at least one of static deflection and dynamic deflection in the rotating blade.
    Type: Application
    Filed: April 28, 2011
    Publication date: November 1, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Venkatesh Rajagopalan, Vivek Venugopal Badami, Rahul Srinivas Prabhu, Ajay Kumar Behera, Aninda Bhattacharya