Patents by Inventor Ajeetkumar Gaddipati

Ajeetkumar Gaddipati has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11474183
    Abstract: A magnetic resonance (MR) imaging method of correcting motion in precorrection MR images of a subject is provided. The method includes applying, by an MR system, a pulse sequence having a k-space trajectory of a blade being rotated in k-space. The method also includes acquiring k-space data of a three-dimensional (3D) imaging volume of the subject, the k-space data of the 3D imaging volume corresponding to the precorrection MR images and acquired by the pulse sequence. The method further includes receiving a 3D MR calibration data of a 3D calibration volume, wherein the 3D calibration volume is greater than or equal to the 3D imaging volume, jointly estimating rotation and translation in the precorrection MR images based on the k-space data of the 3D imaging volume and the calibration data, correcting motion in the precorrection images based on the estimated rotation and the estimated translation, and outputting the motion-corrected images.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: October 18, 2022
    Assignee: GE PRECISION HEALTHCARE LLC
    Inventors: Shaorong Chang, Xucheng Zhu, Ali Ersoz, Ajeetkumar Gaddipati, Moran Wei
  • Patent number: 10928473
    Abstract: Various methods and systems are provided for acquiring a plurality blades of k-space data for magnetic resonance (MR) data acquisition. The plurality blades are arranged in a rotational manner around a center of the k-space. Each of the blades includes a plurality of parallel phase encoding lines indexed sequentially along a phase encoding direction of the blade. The phase encoding lines of each blade are sampled according to an asymmetric phase encoding order. The blade phase encoding orders of at least two adjacent blades are opposite to each other. This results in reducing shading and blurring artifacts in MRI images.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: February 23, 2021
    Assignee: General Electric Company
    Inventors: Ajeetkumar Gaddipati, Ali Ersoz
  • Patent number: 10884086
    Abstract: Systems and methods for accelerated multi-contrast PROPELLER are disclosed herein. K-space is sampled in a rotating fashion using a plurality of radially directed blades around a center of k-space. A first subset of blades is acquired for a first contrast and a second subset of blades is acquired for a second contrasts. The first subset of blades is combined with high frequency components of the second subset of blades to produce an image of the first contrast. And the second subset of blades are combined with high frequency components of the first subset of blades to produce an image of the second contrast.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: January 5, 2021
    Assignee: GE Precision Healthcare LLC
    Inventors: Ali Ersoz, Ajeetkumar Gaddipati, Dawei Gui, Valentina Taviani, Zachary W Slavens
  • Patent number: 10816623
    Abstract: A system and method for reducing MRI-generated acoustic noise is disclosed. A system control of an MRI apparatus causes a plurality of gradient coils and an RF coil assembly in the MRI apparatus to generate pulse sequences that each cause an echo train to form and acquire blades of k-space data of the subject of interest from the pulse sequences, with the blades being rotated about a section of k-space compared to every other blade. The system control also causes the plurality of gradient coils to generate gradient pulses in each pulse sequence having an optimized gradient waveform that reduces an acoustic noise level generated thereby and causes the RF coil assembly to generate a 180 degree prep pulse subsequent to generation of an RF excitation pulse and prior to generation of a first RF refocusing pulse, the 180 degree prep pulse minimizing echo spacing in the echo train.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: October 27, 2020
    Assignee: General Electric Company
    Inventors: Dawei Gui, Anton M. Linz, Ajeetkumar Gaddipati, Xiaoli Zhao, Shaorong Chang, Donglai Huo
  • Publication number: 20200088821
    Abstract: Various methods and systems are provided for acquiring a plurality blades of k-space data for magnetic resonance (MR) data acquisition. The plurality blades are arranged in a rotational manner around a center of the k-space. Each of the blades includes a plurality of parallel phase encoding lines indexed sequentially along a phase encoding direction of the blade. The phase encoding lines of each blade are sampled according to an asymmetric phase encoding order. The blade phase encoding orders of at least two adjacent blades are opposite to each other. This results in reducing shading and blurring artifacts in MM images.
    Type: Application
    Filed: September 17, 2018
    Publication date: March 19, 2020
    Inventors: Ajeetkumar Gaddipati, Ali Ersoz
  • Publication number: 20190049536
    Abstract: A system and method for reducing MRI-generated acoustic noise is disclosed. A system control of an MRI apparatus causes a plurality of gradient coils and an RF coil assembly in the MRI apparatus to generate pulse sequences that each cause an echo train to form and acquire blades of k-space data of the subject of interest from the pulse sequences, with the blades being rotated about a section of k-space compared to every other blade. The system control also causes the plurality of gradient coils to generate gradient pulses in each pulse sequence having an optimized gradient waveform that reduces an acoustic noise level generated thereby and causes the RF coil assembly to generate a 180 degree prep pulse subsequent to generation of an RF excitation pulse and prior to generation of a first RF refocusing pulse, the 180 degree prep pulse minimizing echo spacing in the echo train.
    Type: Application
    Filed: October 16, 2018
    Publication date: February 14, 2019
    Inventors: Dawei Gui, Anton M. Linz, Ajeetkumar Gaddipati, Xiaoli Zhao, Shaorong Chang, Donglai Huo
  • Patent number: 10132889
    Abstract: A system and method for reducing MRI-generated acoustic noise is disclosed. A system control of an MRI apparatus causes a plurality of gradient coils and an RF coil assembly in the MRI apparatus to generate pulse sequences that each cause an echo train to form and acquire blades of k-space data of the subject of interest from the pulse sequences, with the blades being rotated about a section of k-space compared to every other blade. The system control also causes the plurality of gradient coils to generate gradient pulses in each pulse sequence having an optimized gradient waveform that reduces an acoustic noise level generated thereby and causes the RF coil assembly to generate a 180 degree prep pulse subsequent to generation of an RF excitation pulse and prior to generation of a first RF refocusing pulse, the 180 degree prep pulse minimizing echo spacing in the echo train.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: November 20, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Dawei Gui, Anton M. Linz, Ajeetkumar Gaddipati, Xiaoli Zhao, Shaorong Chang, Donglai Huo
  • Patent number: 9322894
    Abstract: In an embodiment, a method includes performing a magnetic resonance (MR) data acquisition sequence including the acquisition of a plurality of blades of k-space data rotated about a section of k-space. The k-space data is representative of gyromagnetic material within a subject of interest, and each blade includes a plurality of encode lines defining a width of the respective blade. The acquisition of each blade includes receiving MR signal from echoes in two or more separate echo trains to fill at least a portion of the plurality of encode lines, and the echo trains are separated by an excitation pulse.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: April 26, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Dawei Gui, Ajeetkumar Gaddipati, Xiaoli Zhao, Shaorong Chang, Zhiqiang Li
  • Patent number: 9103898
    Abstract: A method includes the acts of acquiring a blade of k-space calibration data; acquiring a set of T1-weighted k-space imaging data, the set of T1-weighted k-space imaging data having blades of undersampled k-space data rotated about a section of k-space. Each blade of undersampled k-space data includes first data points having acquired data and second data points that are missing data. The method also includes generating a set of reconstruction weights for the blades of undersampled k-space data using the blade of k-space calibration data; synthesizing k-space data for at least a portion of the second data points using the set of reconstruction weights; and generating a T1-weighted image using the T1-weighted k-space imaging data and the synthesized k-space data.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: August 11, 2015
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: James Hartman Holmes, Jean Helen Brittain, Reed Frederick Busse, Ajeetkumar Gaddipati, Xiaoli Zhao, Philip James Beatty, Zhiqiang Li, Howard Andrew Rowley
  • Publication number: 20140347050
    Abstract: A system and method for reducing MRI-generated acoustic noise is disclosed. A system control of an MRI apparatus causes a plurality of gradient coils and an RF coil assembly in the MRI apparatus to generate pulse sequences that each cause an echo train to form and acquire blades of k-space data of the subject of interest from the pulse sequences, with the blades being rotated about a section of k-space compared to every other blade. The system control also causes the plurality of gradient coils to generate gradient pulses in each pulse sequence having an optimized gradient waveform that reduces an acoustic noise level generated thereby and causes the RF coil assembly to generate a 180 degree prep pulse subsequent to generation of an RF excitation pulse and prior to generation of a first RF refocusing pulse, the 180 degree prep pulse minimizing echo spacing in the echo train.
    Type: Application
    Filed: May 22, 2013
    Publication date: November 27, 2014
    Applicant: General Electric Company
    Inventors: Dawei Gui, Anton M. Linz, Ajeetkumar Gaddipati, Xiaoli Zhao, Shaorong Chang, Donglai Huo
  • Publication number: 20140043024
    Abstract: In an embodiment, a method includes performing a magnetic resonance (MR) data acquisition sequence including the acquisition of a plurality of blades of k-space data rotated about a section of k-space. The k-space data is representative of gyromagnetic material within a subject of interest, and each blade includes a plurality of encode lines defining a width of the respective blade. The acquisition of each blade includes receiving MR signal from echoes in two or more separate echo trains to fill at least a portion of the plurality of encode lines, and the echo trains are separated by an excitation pulse.
    Type: Application
    Filed: August 7, 2012
    Publication date: February 13, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Dawei Gui, Ajeetkumar Gaddipati, Xiaoli Zhao, Shaorong Chang, Zhiqiang Li
  • Patent number: 8384384
    Abstract: A computer readable storage medium has stored thereon a computer program having instructions, which, when executed by a computer, cause the computer to apply a first plurality of RF pulses during a first TR interval of an MR pulse sequence to generate a first echo train. A plurality of echoes of the first echo train are split into a plurality of echo pairs. Within a first echo space, first and second gradient pulses are applied during respective first and second generated echoes, and respective first and second sets of k-space data are acquired that correspond to respective first and second blades of k-space data in the same k-space. The first and second blades have orientations at different angles from one another. The instructions further cause the computer to reconstruct an image based on the acquired first and second sets of k-space data.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: February 26, 2013
    Assignee: General Electric Company
    Inventors: Xiaoli Zhao, Zhiqiang Li, Ajeetkumar Gaddipati
  • Publication number: 20120262172
    Abstract: A method includes the acts of acquiring a blade of k-space calibration data; acquiring a set of T1-weighted k-space imaging data, the set of T1-weighted k-space imaging data having blades of undersampled k-space data rotated about a section of k-space. Each blade of undersampled k-space data includes first data points having acquired data and second data points that are missing data. The method also includes generating a set of reconstruction weights for the blades of undersampled k-space data using the blade of k-space calibration data; synthesizing k-space data for at least a portion of the second data points using the set of reconstruction weights; and generating a T1-weighted image using the T1-weighted k-space imaging data and the synthesized k-space data.
    Type: Application
    Filed: April 18, 2012
    Publication date: October 18, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: James Hartman Holmes, Jean Helen Brittain, Reed Frederick Busse, Ajeetkumar Gaddipati, Xiaoli Zhao, Philip James Beatty, Zhiqiang Li, Howard Andrew Rowley
  • Patent number: 8154293
    Abstract: An apparatus and method of MR imaging is disclosed. The apparatus and method comprises segmenting acquisition of an echo train into separate odd and even acquisition blades in k-space, wherein the odd and even acquisition blades extend orthogonally through a common reference point in a central region of k-space. A segment of MR data is acquired using a quadratic phase modulation scheme, wherein a first set of MR echo signals occurring after odd-numbered RF refocusing pulses are stored in the odd acquisition blade, and a second set of MR echo signals occurring after even-numbered RF refocusing pulses are stored in the even acquisition blade. This acquisition and segmentation is repeated until a sufficient number of blades are acquired to fill k-space. Finally, an image is reconstructed from the acquisition blades.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: April 10, 2012
    Assignee: General Electric Company
    Inventors: Zhiqiang Li, Ken-Pin Hwang, Ajeetkumar Gaddipati, Xiaoli Zhao
  • Publication number: 20110241671
    Abstract: A computer readable storage medium has stored thereon a computer program having instructions, which, when executed by a computer, cause the computer to apply a first plurality of RF pulses during a first TR interval of an MR pulse sequence to generate a first echo train. A plurality of echoes of the first echo train are split into a plurality of echo pairs. Within a first echo space, first and second gradient pulses are applied during respective first and second generated echoes, and respective first and second sets of k-space data are acquired that correspond to respective first and second blades of k-space data in the same k-space. The first and second blades have orientations at different angles from one another. The instructions further cause the computer to reconstruct an image based on the acquired first and second sets of k-space data.
    Type: Application
    Filed: April 1, 2010
    Publication date: October 6, 2011
    Inventors: Xiaoli Zhao, Zhiqiang Li, Ajeetkumar Gaddipati
  • Publication number: 20110025325
    Abstract: An apparatus and method of MR imaging is disclosed. The apparatus and method comprises segmenting acquisition of an echo train into separate odd and even acquisition blades in k-space, wherein the odd and even acquisition blades extend orthogonally through a common reference point in a central region of k-space. A segment of MR data is acquired using a quadratic phase modulation scheme, wherein a first set of MR echo signals occurring after odd-numbered RF refocusing pulses are stored in the odd acquisition blade, and a second set of MR echo signals occurring after even-numbered RF refocusing pulses are stored in the even acquisition blade. This acquisition and segmentation is repeated until a sufficient number of blades are acquired to fill k-space. Finally, an image is reconstructed from the acquisition blades.
    Type: Application
    Filed: July 31, 2009
    Publication date: February 3, 2011
    Inventors: Zhiqiang Li, Ken-Pin Hwang, Ajeetkumar Gaddipati, Xiaoli Zhao
  • Patent number: 7550972
    Abstract: A method and apparatus for reducing vibration-related artifacts in diffusion weighted imaging determines a vibrational frequency of an MR system and modifies scan parameters such that vibrational frequencies induced on the MR system are inconsistent with the vibrational frequency of the MR system. The method and apparatus improves image quality of MR images acquired using diffusion weighted imaging techniques with the MR system. As such, modification and/or redesign of the MR system to reduce vibrational frequency interaction is reduced.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: June 23, 2009
    Assignee: General Electric Company
    Inventors: Joseph K. Maier, Ajeetkumar Gaddipati, Michael J. Radziun, Robert Donald Peters
  • Patent number: 7382127
    Abstract: A system and method of MR imaging enables PROPELLER imaging to be feasibly carried out independently of slice orientation or anatomy of interest. The invention is directed to accelerated acquisition of blades of MR data that are rotated about a central region of k-space and reconstructing an image of arbitrary slice orientation from the blades of MR data that preserves contrast and reduces acceleration artifacts caused by signal amplitude variances.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: June 3, 2008
    Assignee: General Electric Company
    Inventors: Ajeetkumar Gaddipati, Shaorong Chang, Ersin Bayram, Michael R. Hartley
  • Publication number: 20080068016
    Abstract: A system and method of MR imaging enables PROPELLER imaging to be feasibly carried out independently of slice orientation or anatomy of interest. The invention is directed to accelerated acquisition of blades of MR data that are rotated about a central region of k-space and reconstructing an image of arbitrary slice orientation from the blades of MR data that preserves contrast and reduces acceleration artifacts caused by signal amplitude variances.
    Type: Application
    Filed: September 15, 2006
    Publication date: March 20, 2008
    Inventors: Ajeetkumar Gaddipati, Shaorong Chang, Ersin Bayram, Michael R. Hartley
  • Patent number: 7239140
    Abstract: A method and apparatus for reducing vibration-related artifacts in diffusion weighted imaging determines a vibrational frequency of an MR system and modifies scan parameters such that vibrational frequencies induced on the MR system are inconsistent with the vibrational frequency of the MR system. The method and apparatus improves image quality of MR images acquired using diffusion weighted imaging techniques with the MR system. As such, modification and/or redesign of the MR system to reduce vibrational frequency interaction is reduced.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: July 3, 2007
    Assignee: General Electric Company
    Inventors: Joseph K. Maier, Ajeetkumar Gaddipati, Michael J. Radziun, Robert Donald Peters