Patents by Inventor Ajit B. Dandekar

Ajit B. Dandekar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170369392
    Abstract: In a process for the catalytic alkylation of an olefin with an isoparaffin, an olefin-containing feed is contacted with an isoparaffin-containing feed under alkylation conditions in the presence of a solid acid catalyst comprising a crystalline microporous material of the MWW framework types, wherein the olefin-containing feed consists essentially of pentenes.
    Type: Application
    Filed: June 1, 2017
    Publication date: December 28, 2017
    Inventors: Vinit CHOUDHARY, Jihad M. DAKKA, Matthew S. METTLER, Ivy D. JOHNSON, Joshua W. ALLEN, Ajit B. DANDEKAR, Cynthia F. OMILIAN
  • Publication number: 20170335207
    Abstract: Systems and methods are provided for processing of challenged feedstocks to produce distillate fuel products, such as jet boiling range products and/or diesel boiling range products. The challenged feedstocks can have a high aromatics content, a low API gravity, and/or a low cetane index/cetane number. A feedstock can be processed to form distillate fuel products by processing the feedstock in reaction system including at least two stages. The first stage can perform an initial amount of hydrotreating and/or hydrocracking, while the second stage can include exposing a portion of the hydrotreated and/or hydrocracked effluent to a USY catalyst including a supported noble metal. The USY catalyst can have a desirable combination of catalyst properties. Processing a challenged feedstock in a second stage with the USY catalyst having a desirable combination of properties can allow for production of an increased yield of distillate fuel from the challenged feedstock.
    Type: Application
    Filed: March 30, 2017
    Publication date: November 23, 2017
    Inventors: Ajit B. DANDEKAR, Jesse R. McMANUS, Keith WILSON
  • Publication number: 20170283717
    Abstract: Systems and methods are provided for producing lubricant basestocks having a reduced or minimized aromatics content. A first processing stage can perform an initial amount of hydrotreating and/or hydrocracking. A first separation stage can then be used to remove fuels boiling range (and lower boiling range) compounds. The remaining lubricant boiling range fraction can then be exposed under hydrocracking conditions to a USY catalyst including a supported noble metal, such as Pt and/or Pd. The USY catalyst can have a desirable combination of catalyst properties, such as a unit cell size of 24.30 or less (or 24.24 or less), a silica to alumina ratio of at least 50 (or at least 80), and an alpha value of 20 or less (or 10 or less). In some aspects, the effluent from the second (hydrocracking) stage can be dewaxed without further separation. In such aspects, a portion of the dewaxed effluent can be used as a recycle quench stream to cool the hydrocracking effluent prior to entering the dewaxing reactor.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 5, 2017
    Inventors: Ajit B. Dandekar, Bradley R. Fingland, Kendall S. Fruchey, Scott J. Weigel
  • Publication number: 20170183578
    Abstract: Methods are provided for forming lubricant base stocks from feeds such as vacuum resid or other 510° C.+ feeds. A feed can be deasphalted and then catalytically and/or solvent processed to form lubricant base stocks, including bright stocks. The catalytic processing can correspond to processing in at least two stages. The amount of conversion performed in each stage can be varied to produce bright stocks with various properties.
    Type: Application
    Filed: December 27, 2016
    Publication date: June 29, 2017
    Inventors: Timothy L. Hilbert, Michael B. Carroll, Ajit B. Dandekar, Sara L. Yohe, Stephen H. Brown, Tracie L. Owens, April D. Ross, Eric B. Senzer, Steven Pyl, Rugved P. Pathare, Lisa I-Ching Yeh, Bradley R. Fingland, Keith K. Aldous, Anjaneya S. Kovvali, Kendall S. Fruchey, Charles L. Baker, JR., Camden N. Henderson
  • Publication number: 20170183580
    Abstract: Methods are provided for producing lubricant base stocks from deasphalted oils formed by sequential deasphalting. The deasphalted oil can be exposed a first deasphalting process using a first solvent that can provide a lower severity of deasphalting and a second deasphalting process using a second solvent that can provide a higher severity of deasphalting. This can result in formation of at least a deasphalted oil and a resin fraction. The resin fraction can represent a fraction that traditionally would have been included as part of a deasphalter rock fraction.
    Type: Application
    Filed: December 27, 2016
    Publication date: June 29, 2017
    Inventors: Mohsen N. Harandi, Doron Levin, Himanshu Gupta, James R. Lattner, Glenn C. Wood, Keith K. Aldous, Timothy L. Hilbert, Michael B. Carroll, Ajit B. Dandekar, Sara L. Yohe, Stephen H. Brown, Tracie L. Owens, April D. Ross, Eric B. Senzer, Steven Pyl
  • Publication number: 20170183576
    Abstract: Methods are provided for forming lubricant base stocks from feeds such as vacuum resid or other 510° C.+ feeds. A feed can be deasphalted and then catalytically and/or solvent processed to form lubricant base stocks, including bright stocks that are resistant to haze formation.
    Type: Application
    Filed: December 27, 2016
    Publication date: June 29, 2017
    Inventors: Timothy L. Hilbert, Michael B. Carroll, Ajit B. Dandekar, Sara L. Yohe, Stephen H. Brown, Tracie L. Owens, April D. Ross, Eric B. Senzer, Steven Pyl, Rugved P. Pathare, Lisa I-Ching Yeh, Bradley R. Fingland, Keith K. Aldous, Anjaneya S. Kovvali, Kendall S. Fruchey
  • Publication number: 20170183579
    Abstract: Systems and methods are provided for integration of use deasphalted resid as a feed for fuels and/or lubricant base stock production with use of the corresponding deasphalter rock for gasification to generate hydrogen and/or fuel for the fuels and/or lubricant production process. The integration can include using hydrogen generated during gasification as a fuel to provide heat for solvent processing and/or using the hydrogen for hydroprocessing of deasphalted oil.
    Type: Application
    Filed: December 27, 2016
    Publication date: June 29, 2017
    Inventors: Kendall S. Fruchey, Sara K. Green, Anjaneya S. Kovvali, Timothy L. Hilbert, Michael B. Carroll, Ajit B. Dandekar, Sara L. Yohe, Stephen H. Brown, Tracie L. Owens, April D. Ross, Eric B. Senzer, Steven Pyl
  • Publication number: 20170183577
    Abstract: Methods are provided for forming lubricant base stocks from feeds such as vacuum resid or other 510° C.+ feeds. A feed can be deasphalted and then catalytically and/or solvent processed to form lubricant base stocks, including bright stocks that are resistant to haze formation.
    Type: Application
    Filed: December 27, 2016
    Publication date: June 29, 2017
    Inventors: Timothy L. Hilbert, Michael B. Carroll, Ajit B. Dandekar, Sara L. Yohe, Stephen H. Brown, Tracie L. Owens, April D. Ross, Eric B. Senzer, Steven Pyl, Rugved P. Pathare, Lisa I-Ching Yeh, Bradley R. Fingland, Keith K. Aldous, Anjaneya S. Kovvali, Kendall S. Fruchey, Sara K. Green, Camden N. Henderson
  • Patent number: 9598651
    Abstract: An integrated process for producing naphtha fuel, diesel fuel and/or lubricant base oils from feedstocks under sour conditions is provided. The ability to process feedstocks under higher sulfur and/or nitrogen conditions allows for reduced cost processing and increases the flexibility in selecting a suitable feedstock. The sour feed can be delivered to a catalytic dewaxing step without any separation of sulfur and nitrogen contaminants. The integrated process includes an initial dewaxing of a feed under sour conditions, optional hydrocracking of the dewaxed feed, and a separation to form a first diesel product and a bottoms fraction. The bottoms fraction is then exposed to additional hydrocracking and dewaxing to form a second diesel product and optionally a lubricant base oil product. Alternatively, a feedstock can be hydrotreated, fractionated, dewaxed, and then hydrocracked to form a diesel fuel and a dewaxed, hydrocracked bottoms fraction that is optionally suitable for use as a lubricant base oil.
    Type: Grant
    Filed: February 11, 2015
    Date of Patent: March 21, 2017
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Krista M. Prentice, Michel Daage, Ajit B. Dandekar, Christopher G. Oliveri, Rohit Vijay, Stephen J. McCarthy, Wenyih F. Lai, Bradley R. Fingland
  • Patent number: 9487723
    Abstract: Provided are high viscosity high quality Group II lube base stocks with improved properties produced by an integrated hydrocracking and dewaxing process. In one form, the Group II lube base stock includes greater than or equal to 90 wt. % saturates, and less than 10 wt. % aromatics, and has an aromatic performance ratio between 1.0 and 5.0. Also provided are lubricant formulations including the high viscosity high quality Group II lube base stock.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: November 8, 2016
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gretchen L. Holtzer, Ajit B. Dandekar, Charles L. Baker, Jr., Bradley R. Fingland, Bryan E. Hagee, Cathleen Yung, Frank C. Wang, Eugenio Sanchez, Rugved Prakash Pathare
  • Publication number: 20160145511
    Abstract: Methods are provided for hydroprocessing a feed (such as hydrotreating, hydrocracking, or hydrofining a feed) to generate a product with a reduced or minimized aromatics content relative to the severity of the hydroprocessing conditions. In some types of hydroprocessing applications, it can be desirable to select the severity of hydroprocessing conditions to achieve a desired level of removal for sulfur, a desired level for removal of nitrogen, and/or a desired level for increasing the viscosity index of a feed. The severity for heteroatom removal and/or viscosity index uplift can also correspond to an amount of conversion of a feed to lower boiling point products, so the lowest severity conditions suitable for achieving a product quality can be desirable. By improving the aromatics saturation during hydroprocessing, the severity of subsequent aromatics saturation processes can be reduced.
    Type: Application
    Filed: November 4, 2015
    Publication date: May 26, 2016
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Xiaochun Xu, Bradley R. Fingland, Keith Wilson, Doron Levin, Stuart L. Soled, Sabato Miseo, Joseph E. Baumgartner, Ajit B. Dandekar
  • Publication number: 20150218466
    Abstract: An integrated process for producing naphtha fuel, diesel fuel and/or lubricant base oils from feedstocks under sour conditions is provided. The ability to process feedstocks under higher sulfur and/or nitrogen conditions allows for reduced cost processing and increases the flexibility in selecting a suitable feedstock. The sour feed can be delivered to a catalytic dewaxing step without any separation of sulfur and nitrogen contaminants. The integrated process includes an initial dewaxing of a feed under sour conditions, optional hydrocracking of the dewaxed feed, and a separation to form a first diesel product and a bottoms fraction. The bottoms fraction is then exposed to additional hydrocracking and dewaxing to form a second diesel product and optionally a lubricant base oil product. Alternatively, a feedstock can be hydrotreated, fractionated, dewaxed, and then hydrocracked to form a diesel fuel and a dewaxed, hydrocracked bottoms fraction that is optionally suitable for use as a lubricant base oil.
    Type: Application
    Filed: February 11, 2015
    Publication date: August 6, 2015
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Krista M. Prentice, Michel Daage, Ajit B. Dandekar, Christopher G. Oliveri, Rohit Vijay, Stephen J. McCarthy, Wenyih F. Lai, Bradley R. Fingland
  • Patent number: 8932454
    Abstract: This invention relates to the composition, method of making and use of a hydrocracking catalyst that is comprised of a new Y zeolite which exhibits an exceptionally low small mesoporous peak around the 40 ? (angstrom) range as determined by nitrogen adsorption measurements. The hydrocracking catalysts of invention exhibit improved distillate yield and selectivity as well as improved conversions at lower temperatures than conventional hydrocracking catalysts containing Y zeolites. The hydrocracking catalysts herein are particularly useful in the hydrocracking processes as disclosed herein, particularly for conversion of heavy hydrocarbon feedstocks such as gas oils and vacuum tower bottoms and an associated maximization and/or improved selectivity of the distillate yield obtained from such hydrocracking processes.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: January 13, 2015
    Assignee: ExxonMobile Research and Engineering Co.
    Inventors: Jianxin Jason Wu, Ajit B. Dandekar, Christopher G. Oliveri
  • Patent number: 8858907
    Abstract: Methods and systems for selective catalytic reduction of NOx with an ammonia reductant and a zeolite catalyst loaded with at least two metals selected from the group of tungsten, cobalt, and vanadium. An exhaust stream including NOx and a reductant stream including ammonia are provided to a catalytic reactor having the metal loaded zeolite catalyst at suitable operating temperatures for NOx reduction of at least 90%.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: October 14, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Ajit B. Dandekar, Richard F. Socha, Richard L. Eckes, S. Beau Waldrup, Jason M. McMullan
  • Patent number: 8834823
    Abstract: Methods and systems for selective catalytic reduction of NOx with an activated-carbon-supported metal catalyst at an operating temperature of between about between about 500° C. and about 750° C. An exhaust stream including NOx is introduced to a catalytic reactor having the activated-carbon-supported metal catalyst for NOx reduction of at least 90%. A second catalyst reactor can be provided downstream to remove or convert nitrous oxide as desired.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: September 16, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Ajit B. Dandekar, Richard F. Socha, Richard L. Eckes, S. Beau Waldrup
  • Patent number: 8815195
    Abstract: Methods and systems are provided for selective catalytic reduction of NOx with a low molecular low molecular weight hydrocarbon, e.g., propylene, as a reductant using a catalyst system including two catalysts. An exhaust stream containing an amount of NOx from a combustion operation is provided. A portion of the exhaust stream and a reductant stream including a low molecular weight hydrocarbon is introduced to a first catalytic reactor, which comprises a first catalyst including alumina loaded with silver. The NOx-reduced exhaust stream from the first catalyst is then directed to a second catalyst including zirconia loaded with at least one metal.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: August 26, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Ajit B. Dandekar, Richard F. Socha, Richard L. Eckes, S. Beau Waldrup
  • Patent number: 8795621
    Abstract: Methods and systems are provided for selective catalytic reduction of NOx with a low molecular low molecular weight aldehyde, e.g., acetaldehyde, as a reductant using a catalyst system including two catalysts. An exhaust stream containing an amount of NO from a combustion operation is provided. A portion of the exhaust stream is introduced to a first catalyst to convert the NO to NO2. The exhaust stream from the first catalyst with NO2 and a reductant stream containing a low molecular weight aldehyde, e.g., acetaldehyde, are introduced to the second catalyst to convert the NO2 to N2. The first catalyst can be bulk Co3O4, Ru or Pt loaded on alumina; the second catalyst can be various zeolites, or zeolites loaded with potassium.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: August 5, 2014
    Assignee: ExxonMobil Research and Engineering
    Inventors: Ajit B. Dandekar, Richard F. Socha, Richard L. Eckes, S. Beau Waldrup, Jason M. McMullan
  • Patent number: 8778171
    Abstract: This invention relates to hydrocracking catalysts utilizing stabilized aggregates of small primary crystallites of zeolite Y that are clustered into larger secondary particles. At least 80% of the secondary particles may comprise at least 5 primary crystallites. The size of the primary crystallites may be at most about 0.5 micron, or at most about 0.3 micron, and the size of the secondary particles may be at least about 0.8 micron, or at least about 1.0 ?m. The silica to alumina ratio of the resulting stabilized aggregated Y zeolite may be 4:1 or more. This invention also relates to the use of such catalysts in hydrocracking processes for the conversion of heavy oils into lighter fuel products. The invention is particularly suited for the selective production of diesel range products from gas oil range feedstock materials under hydrocracking conditions.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: July 15, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Christopher G. Oliveri, Wenyih Frank Lai, Ajit B. Dandekar, Scott J. Weigel, Jason Wu, Robert E. Kay
  • Publication number: 20140041364
    Abstract: Methods and systems for selective catalytic reduction of NOx with an ammonia reductant and a zeolite catalyst loaded with at least two metals selected from the group of tungsten, cobalt, and vanadium. An exhaust stream including NOx and a reductant stream including ammonia are provided to a catalytic reactor having the metal loaded zeolite catalyst at suitable operating temperatures for NOx reduction of at least 90%.
    Type: Application
    Filed: July 10, 2013
    Publication date: February 13, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Ajit B. DANDEKAR, Richard F. SOCHA, Richard L. ECKES, S. Beau WALDRUP, Jason M. McMULLAN
  • Publication number: 20140044636
    Abstract: Methods and systems for selective catalytic reduction of NOx with an activated-carbon-supported metal catalyst at an operating temperature of between about between about 500° C. and about 750° C. An exhaust stream including NOx is introduced to a catalytic reactor having the activated-carbon-supported metal catalyst for NOx reduction of at least 90%. A second catalyst reactor can be provided downstream to remove or convert nitrous oxide as desired.
    Type: Application
    Filed: July 10, 2013
    Publication date: February 13, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Ajit B. DANDEKAR, Richard F. SOCHA, Richard L. ECKES, S. Beau WALDRUP