Patents by Inventor Akash Akash

Akash Akash has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240034690
    Abstract: A ceramic body is provided that is suitable for use in dental applications to provide a natural aesthetic appearance. A colorized ceramic body is formed that has at least one color region and a color gradient region. A ceramic body is formed having at least two color regions and a color gradient that forms a transition region between two color regions. A method for making the colorized ceramic body includes unidirectional infiltration of a coloring composition into the ceramic body.
    Type: Application
    Filed: October 16, 2023
    Publication date: February 1, 2024
    Applicant: James R. Glidewell Dental Ceramics, Inc.
    Inventors: Dongkyu Kim, Akash Akash
  • Patent number: 9873101
    Abstract: An apparatus and method for enhancing the yield and purity of hydrogen when reforming hydrocarbons is disclosed in one embodiment of the invention as including receiving a hydrocarbon feedstock fuel (e.g., methane, vaporized methanol, natural gas, vaporized diesel, etc.) and steam at a reaction zone and reacting the hydrocarbon feedstock fuel and steam in the presence of a catalyst to produce hydrogen gas. The hydrogen gas is selectively removed from the reaction zone while the reaction is occurring by selectively diffusing the hydrogen gas through a porous ceramic membrane. The selective removal of hydrogen changes the equilibrium of the reaction and increases the amount of hydrogen that is extracted from the hydrocarbon feedstock fuel.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: January 23, 2018
    Assignee: CERAMATEC, INC.
    Inventors: Joseph J. Hartvigsen, Balakrishnan Nair, Merrill Wilson, Akash Akash
  • Publication number: 20150174548
    Abstract: An apparatus and method for enhancing the yield and purity of hydrogen when reforming hydrocarbons is disclosed in one embodiment of the invention as including receiving a hydrocarbon feedstock fuel (e.g., methane, vaporized methanol, natural gas, vaporized diesel, etc.) and steam at a reaction zone and reacting the hydrocarbon feedstock fuel and steam in the presence of a catalyst to produce hydrogen gas. The hydrogen gas is selectively removed from the reaction zone while the reaction is occurring by selectively diffusing the hydrogen gas through a porous ceramic membrane. The selective removal of hydrogen changes the equilibrium of the reaction and increases the amount of hydrogen that is extracted from the hydrocarbon feedstock fuel.
    Type: Application
    Filed: January 27, 2015
    Publication date: June 25, 2015
    Inventors: Joseph J. Hartvigsen, Balakrishnan Nair, Merrill Wilson, Akash Akash
  • Patent number: 8961625
    Abstract: An apparatus and method for enhancing the yield and purity of hydrogen when reforming hydrocarbons is disclosed in one embodiment of the invention as including receiving a hydrocarbon feedstock fuel (e.g., methane, vaporized methanol, natural gas, vaporized diesel, etc.) and steam at a reaction zone and reacting the hydrocarbon feedstock fuel and steam in the presence of a catalyst to produce hydrogen gas. The hydrogen gas is selectively removed from the reaction zone while the reaction is occurring by selectively diffusing the hydrogen gas through a porous ceramic membrane. The selective removal of hydrogen changes the equilibrium of the reaction and increases the amount of hydrogen that is extracted from the hydrocarbon feedstock fuel.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: February 24, 2015
    Assignee: Ceramatec, Inc.
    Inventors: Joseph J. Hartvigsen, Balakrishnan G. Nair, Merrill Wilson, Akash Akash
  • Patent number: 8357239
    Abstract: A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: January 22, 2013
    Assignee: Ceramatec, Inc.
    Inventors: Chett Boxley, Akash Akash, Qiang Zhao
  • Patent number: 8349071
    Abstract: A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: January 8, 2013
    Assignee: Ceramatec, Inc.
    Inventors: Chett Boxley, Akash Akash, Qiang Zhao
  • Patent number: 8349111
    Abstract: A method for joining multiple ceramic components together is disclosed in one embodiment of the invention as including providing multiple ceramic components, each having a mating surface. A slip containing a mixture of alumina powder and a phosphate-containing reagent is applied to one or more of the mating surfaces. The mean particle size of the alumina powder is tailored to provide improved strength to the bond. Once the slip is applied, the ceramic components may be joined together at their mating surfaces. The joint may then be sintered to react the constituents in the mixture and thereby generate a bond between the ceramic components.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: January 8, 2013
    Assignee: Ceramatec, Inc.
    Inventors: Akash Akash, Balakrishnan G. Nair
  • Publication number: 20120216716
    Abstract: A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.
    Type: Application
    Filed: April 18, 2012
    Publication date: August 30, 2012
    Inventors: Chett Boxley, Akash Akash, Qiang Zhao
  • Publication number: 20120216715
    Abstract: A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.
    Type: Application
    Filed: April 18, 2012
    Publication date: August 30, 2012
    Inventors: Chett Boxley, Akash Akash, Qiang Zhao
  • Publication number: 20120175042
    Abstract: A method for joining multiple ceramic components together is disclosed in one embodiment of the invention as including providing multiple ceramic components, each having a mating surface. A slip containing a mixture of alumina powder and a phosphate-containing reagent is applied to one or more of the mating surfaces. The mean particle size of the alumina powder is tailored to provide improved strength to the bond. Once the slip is applied, the ceramic components may be joined together at their mating surfaces. The joint may then be sintered to react the constituents in the mixture and thereby generate a bond between the ceramic components.
    Type: Application
    Filed: July 20, 2007
    Publication date: July 12, 2012
    Inventors: Akash Akash, Balakrishnan G. Nair
  • Patent number: 8172940
    Abstract: A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: May 8, 2012
    Assignee: Ceramatec, Inc.
    Inventors: Chett Boxley, Akash Akash, Qiang Zhao
  • Publication number: 20090304775
    Abstract: An apparatus in accordance with the present invention may include an orthopedic implant having one or more voids integrated into a surface thereof. A beneficial agent may be deposited into each void, and a regulator element may substantially cover an open end of thereof. In this manner, the regulator element may regulate delivery of the beneficial agent through the open end of the voids over a period of time.
    Type: Application
    Filed: June 3, 2009
    Publication date: December 10, 2009
    Inventors: Ashok V. Joshi, Akash Akash, John Howard Gordon
  • Patent number: 7628951
    Abstract: A method is provided for producing insulation materials and insulation for high temperature applications using novel castable and powder-based ceramics. The ceramic components produced using the proposed process offers (i) a fine porosity (from nano-to micro scale); (ii) a superior strength-to-weight ratio; and (iii) flexibility in designing multilayered features offering multifunctionality which will increase the service lifetime of insulation and refractory components used in the solid oxide fuel cell, direct carbon fuel cell, furnace, metal melting, glass, chemical, paper/pulp, automobile, industrial heating, coal, and power generation industries. Further, the ceramic components made using this method may have net-shape and/or net-size advantages with minimum post machining requirements.
    Type: Grant
    Filed: August 14, 2006
    Date of Patent: December 8, 2009
    Assignee: Ceramatec, Inc.
    Inventors: Akash Akash, Nair Balakrishnan G.
  • Publication number: 20090295045
    Abstract: A method is provided for producing insulation materials and insulation for high temperature applications using novel castable and powder-based ceramics. The ceramic components produced using the proposed process offers (i) a fine porosity (from nano-to micro scale); (ii) a superior strength-to-weight ratio; and (iii) flexibility in designing multilayered features offering multifunctionality which will increase the service lifetime of insulation and refractory components used in the solid oxide fuel cell, direct carbon fuel cell, furnace, metal melting, glass, chemical, paper/pulp, automobile, industrial heating, coal, and power generation industries. Further, the ceramic components made using this method may have net-shape and/or net-size advantages with minimum post machining requirements.
    Type: Application
    Filed: August 14, 2006
    Publication date: December 3, 2009
    Inventors: Akash Akash, Nair Balakrishnan G.
  • Patent number: 7517489
    Abstract: A method is provided for synthesizing beads using starting ceramic, metal, or mineral powders. Typical size of these round beads can range from about 0.1 mm to about 10 mm based on the processing variables. In the method, a slip is obtained which contains a metal, ceramic, and/or mineral powder dispersed in a solvent and an organic binder, such as a grain flour. Droplets of the slip are contacted with heated oil for a sufficient time to form beads. The beads are separated from the oil and dried to remove entrained water. The beads are fired at a temperature sufficient to produce beads possessing desired physical or chemical characteristics. The beads have useful biomedical applications as bone filler materials for bone fixation and bone growth. The beads may be coated with chemical catalyst agents and function as catalyst supports in chemical processes.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: April 14, 2009
    Assignee: Ceramatec, Inc.
    Inventor: Akash Akash
  • Publication number: 20090013907
    Abstract: A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.
    Type: Application
    Filed: July 12, 2007
    Publication date: January 15, 2009
    Inventors: Chett Boxley, Akash Akash, Qiang Zhao
  • Publication number: 20080148636
    Abstract: An apparatus and method for enhancing the yield and purity of hydrogen when reforming hydrocarbons is disclosed in one embodiment of the invention as including receiving a hydrocarbon feedstock fuel (e.g., methane, vaporized methanol, natural gas, vaporized diesel, etc.) and steam at a reaction zone and reacting the hydrocarbon feedstock fuel and steam in the presence of a catalyst to produce hydrogen gas. The hydrogen gas is selectively removed from the reaction zone while the reaction is occurring by selectively diffusing the hydrogen gas through a porous ceramic membrane. The selective removal of hydrogen changes the equilibrium of the reaction and increases the amount of hydrogen that is extracted from the hydrocarbon feedstock fuel.
    Type: Application
    Filed: December 19, 2007
    Publication date: June 26, 2008
    Inventors: Joseph Hartvigsen, Balakrishana G. Nair, Merrill Wison, Akash Akash
  • Publication number: 20080147186
    Abstract: An apparatus for providing beneficial agents to the body is disclosed in one aspect of the invention as including an implant and a device integrated with the implant to generate a beneficial agent, such as iodine, chlorine, or other halogens. The device includes electrodes to conduct an electrical current and a substantially solid layer between the electrodes. An electrical current passes between the electrodes to electrochemically generate the beneficial agent. The implant may include a variety of devices to produce the beneficial agent, including for example an electrochemical cell, a capacitor, an electrochemical capacitor, a galvanic cell, or the like. Similarly, because of the solid state construction of the device, the device may, in certain embodiments, be incorporated into a load-bearing implant. This may be useful for use with certain types of implants, such as orthopedic implants.
    Type: Application
    Filed: December 14, 2006
    Publication date: June 19, 2008
    Inventors: Ashok V. Joshi, Akash Akash
  • Publication number: 20080026248
    Abstract: An article and method to provide protection in various environments. The article may include a metal substrate having a first coefficient of thermal expansion, a magnesium oxide-based layer having a second coefficient of thermal expansion, and a bond layer disposed between the metal substrate and the magnesium oxide-based layer. The bond layer may include a third coefficient of thermal expansion substantially intermediate the first and second coefficients of thermal expansion to facilitate thermal compatibility between the metal substrate and the magnesium oxide-based layer. Further, the magnesium oxide-based layer may be substantially non-porous, thereby providing a hermetic seal limiting gases, particulates, steam and fluid access to the metal substrate.
    Type: Application
    Filed: January 25, 2007
    Publication date: January 31, 2008
    Inventors: Shekar Balagopal, Justin Pendleton, Akash Akash, Kevin Kennedy
  • Publication number: 20070260324
    Abstract: A fully or partially bioresorbable orthopedic implant to provide support along a load-bearing axis and a method for producing the same. The implant may include an implant body and a reinforcement material, where the reinforcement material is integrated into the implant body and oriented to provide support along one or more load-bearing axes. The reinforcement material may include a rate of bioresorption that is less than a rate of bioresorption associated with the implant body. In this manner, the fully or partially bioresorbable orthopedic implant of the present invention may facilitate bone ingrowth while providing increased mechanical strength, increased load-bearing capacity, increased bone ingrowth, and decreased propensity for fracture.
    Type: Application
    Filed: May 4, 2007
    Publication date: November 8, 2007
    Inventors: Ashok V. Joshi, Akash Akash