Patents by Inventor Aki Takei

Aki Takei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11929230
    Abstract: A large current electron beam is stably emitted from an electron gun of a charged particle beam device. The electron gun of the charged particle beam device includes: a SE tip 202; a suppressor 303 disposed rearward of a distal end of the SE tip; a cup-shaped extraction electrode 204 including a bottom surface and a cylindrical portion and enclosing the SE tip and the suppressor; and an insulator 208 holding the suppressor and the extraction electrode. A shield electrode 301 of a conductive metal having a cylindrical portion 302 is provided between the suppressor and the cylindrical portion of the extraction electrode. A voltage lower than a voltage of the SE tip is applied to the shield electrode.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: March 12, 2024
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Keigo Kasuya, Akira Ikegami, Kazuhiro Honda, Masahiro Fukuta, Takashi Doi, Souichi Katagiri, Aki Takei, Soichiro Matsunaga
  • Patent number: 11508544
    Abstract: To stabilize an emitted electron beam, a thermoelectric field emission electron source includes: an electron source having a needle shape; a metal wire to which the electron source is fixed and configured to heat the electron source; a stem fixed to an insulator and configured to energize the metal wire; a first electrode having a first opening portion and arranged such that a tip of the electron source protrudes from the first opening portion; a second electrode having a second opening portion; and an insulating body configured to position the first electrode and the second electrode such that a central axis of the first opening portion and a central axis of the second opening portion coincide with each other, and to provide electrical insulation between the first and second electrodes, so as to provide a structure that reduces an amount of gas released when the first electrode is heated.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: November 22, 2022
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Soichiro Matsunaga, Souichi Katagiri, Keigo Kasuya, Aki Takei, Hajime Kawano, Takashi Doi
  • Publication number: 20220199349
    Abstract: A large current electron beam is stably emitted from an electron gun of a charged particle beam device. The electron gun of the charged particle beam device includes: a SE tip 202; a suppressor 303 disposed rearward of a distal end of the SE tip; a cup-shaped extraction electrode 204 including a bottom surface and a cylindrical portion and enclosing the SE tip and the suppressor; and an insulator 208 holding the suppressor and the extraction electrode. A shield electrode 301 of a conductive metal having a cylindrical portion 302 is provided between the suppressor and the cylindrical portion of the extraction electrode. A voltage lower than a voltage of the SE tip is applied to the shield electrode.
    Type: Application
    Filed: April 18, 2019
    Publication date: June 23, 2022
    Applicant: Hitachi High-Tech Corporation
    Inventors: Keigo KASUYA, Akira IKEGAMI, Kazuhiro HONDA, Masahiro FUKUTA, Takashi DOI, Souichi KATAGIRI, Aki TAKEI, Soichiro MATSUNAGA
  • Publication number: 20220037107
    Abstract: To stabilize an amount of electron beam emitted from a thermoelectric field emission electron source. A thermoelectric field emission electron source includes: an electron source 301 having a needle shape; a metal wire 302 to which the electron source is fixed and configured to heat the electron source; a stem 303 fixed to an insulator and configured to energize the metal wire; a first electrode 304 having a first opening portion 304a and arranged such that a tip of the electron source protrudes from the first opening portion; a second electrode 306 having a second opening portion 306a; and an insulating body 307 configured to position the first electrode and the second electrode such that a central axis of the first opening portion and a central axis of the second opening portion coincide with each other, and provide electrical insulation between the first electrode and the second electrode, so as to provide a structure in which an amount of gas released when the first electrode is heated is reduced.
    Type: Application
    Filed: September 25, 2018
    Publication date: February 3, 2022
    Inventors: Soichiro Matsunaga, Souichi Katagiri, Keigo Kasuya, Aki Takei, Hajime Kawano, Takashi Doi
  • Patent number: 10336609
    Abstract: First, an ion beam is applied to a workpiece to form a tapered hole the side wall of which is inclined. Next, the application of the ion beam is stopped, and then a material gas is introduced from the gas source to the upper surface of the workpiece from an oblique direction to cause gas molecules to be adsorbed to the upper surface of the workpiece and to the upper portion of the side wall of the hole. Next, introduction of the material gas is stopped, and then the ion beam is applied again to the region of the workpiece where the hole is formed. As a result, at the upper portion of the side wall of the hole, film formation occurs using the gas molecules as the material adsorbed to the side wall of the hole, and, at the bottom portion of the hole, etching of the workpiece occurs.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: July 2, 2019
    Assignee: Hitachi, Ltd.
    Inventors: Keiji Watanabe, Shuntaro Machida, Katsuya Miura, Aki Takei, Tetsufumi Kawamura, Nobuyuki Sugii, Daisuke Ryuzaki
  • Publication number: 20170362082
    Abstract: First, an ion beam is applied to a workpiece to form a tapered hole the side wall of which is inclined. Next, the application of the ion beam is stopped, and then a material gas is introduced from the gas source to the upper surface of the workpiece from an oblique direction to cause gas molecules to be adsorbed to the upper surface of the workpiece and to the upper portion of the side wall of the hole. Next, introduction of the material gas is stopped, and then the ion beam is applied again to the region of the workpiece where the hole is formed. As a result, at the upper portion of the side wall of the hole, film formation occurs using the gas molecules as the material adsorbed to the side wall of the hole, and, at the bottom portion of the hole, etching of the workpiece occurs.
    Type: Application
    Filed: June 1, 2017
    Publication date: December 21, 2017
    Inventors: Keiji WATANABE, Shuntaro MACHIDA, Katsuya MIURA, Aki TAKEI, Tetsufumi KAWAMURA, Nobuyuki SUGII, Daisuke RYUZAKI
  • Patent number: 8686442
    Abstract: The present invention provides a nitride semiconductor light emitting device having an n-electrode that has an Au face excellent in ohmic contacts to an n-type nitride semiconductor and excellent in mounting properties, and a method of manufacturing the same. The nitride semiconductor light emitting device uses an n-electrode having a three-layer laminate structure that is composed of a first layer containing aluminum nitride and having a thickness not less than 1 nm or less than 5 nm, a second layer containing one or more metals selected from Ti, Zr, Hf, Mo, and Pt, and a third layer made of Au, from the near side of the n-type nitride semiconductor in order of mention. The n-electrode thus formed is then annealed to obtain ohmic contacts to the n-type nitride semiconductor.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: April 1, 2014
    Assignee: Oclaro Japan, Inc.
    Inventors: Akihisa Terano, Aki Takei
  • Publication number: 20120228664
    Abstract: The present invention provides a nitride semiconductor light emitting device having an n-electrode that has an Au face excellent in ohmic contacts to an n-type nitride semiconductor and excellent in mounting properties, and a method of manufacturing the same. The nitride semiconductor light emitting device uses an n-electrode having a three-layer laminate structure that is composed of a first layer containing aluminum nitride and having a thickness not less than 1 nm or less than 5 nm, a second layer containing one or more metals selected from Ti, Zr, Hf, Mo, and Pt, and a third layer made of Au, from the near side of the n-type nitride semiconductor in order of mention. The n-electrode thus formed is then annealed to obtain ohmic contacts to the n-type nitride semiconductor.
    Type: Application
    Filed: May 22, 2012
    Publication date: September 13, 2012
    Inventors: Akihisa TERANO, Aki Takei
  • Patent number: 8000364
    Abstract: The present invention provides a nitride semiconductor light emitting device having an n-type ohmic electrode with an Au face excellent in ohmic contacts and in mounting properties, and a method of manufacturing the same. The device uses an n-type ohmic electrode having a laminate structure that is composed of: a first layer containing Al as a main ingredient and having a thickness not greater than 10 nm or not less than 3 nm; a second layer containing one or more metals selected from Mo and Nb, so as to suppress the upward diffusion of Al; a third layer containing one or more metals selected from Ti and Pt, to suppress the downward diffusion of Al; and a fourth layer being made of Au, from the side in contact with an n-type nitride substrate in order of mention, and after the laminate structure is formed, the n-type ohmic electrode is annealed.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: August 16, 2011
    Assignee: Opnext Japan, Inc.
    Inventors: Aki Takei, Akihisa Terano
  • Publication number: 20090206360
    Abstract: The present invention provides a nitride semiconductor light emitting device having an n-electrode that has an Au face excellent in ohmic contacts to an n-type nitride semiconductor and excellent in mounting properties, and a method of manufacturing the same. The nitride semiconductor light emitting device uses an n-electrode having a three-layer laminate structure that is composed of a first layer containing aluminum nitride and having a thickness not less than 1 nm or less than 5 nm, a second layer containing one or more metals selected from Ti, Zr, Hf, Mo, and Pt, and a third layer made of Au, from the near side of the n-type nitride semiconductor in order of mention. The n-electrode thus formed is then annealed to obtain ohmic contacts to the n-type nitride semiconductor.
    Type: Application
    Filed: August 19, 2008
    Publication date: August 20, 2009
    Inventors: Akihisa TERANO, Aki TAKEI
  • Publication number: 20090207872
    Abstract: The present invention provides a nitride semiconductor light emitting device having an n-type ohmic electrode with an Au face excellent in ohmic contacts and in mounting properties, and a method of manufacturing the same. The device uses an n-type ohmic electrode having a laminate structure that is composed of: a first layer containing Al as a main ingredient and having a thickness not greater than 10 nm or not less than 3 nm; a second layer containing one or more metals selected from Mo and Nb, so as to suppress the upward diffusion of Al; a third layer containing one or more metals selected from Ti and Pt, to suppress the downward diffusion of Al; and a fourth layer being made of Au, from the side in contact with an n-type nitride substrate in order of mention, and after the laminate structure is formed, the n-type ohmic electrode is annealed.
    Type: Application
    Filed: August 19, 2008
    Publication date: August 20, 2009
    Inventors: Aki Takei, Akihisa Terano