Patents by Inventor Akihiko Kanamori

Akihiko Kanamori has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7626395
    Abstract: In a hybrid vehicle, first, an engine is locked by an engine shaft locking mechanism. A first motor is connected to a first inverter circuit and a second motor is connected to a second inverter circuit and then both the motors are operated, and the output characteristics of each motor are obtained. Further, the first motor is connected to the second inverter circuit and the second motor is connected to the first inverter circuit and then both the motors are operated, and the output characteristics of each motor are obtained. Based on the obtained output characteristics, it is determined whether each of the motors and the inverter circuits is normal or not.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: December 1, 2009
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Akihiko Kanamori
  • Publication number: 20090095063
    Abstract: In a hybrid vehicle, first, an engine is locked by an engine shaft locking mechanism. A first motor is operated by torque control and a second motor is operated by number-of-revolutions control. Torque for controlling the second motor in this state is obtained. Based on the obtained control torque, whether the first motor is normal is checked. Successively, the second motor is operated by the torque control and the first motor is operated by the number-of-revolutions control to check whether the second motor is normal in a similar manner.
    Type: Application
    Filed: October 5, 2007
    Publication date: April 16, 2009
    Inventor: Akihiko Kanamori
  • Publication number: 20090096463
    Abstract: In a hybrid vehicle, first, an engine is locked by an engine shaft locking mechanism. A first motor is connected to a first inverter circuit and a second motor is connected to a second inverter circuit and then both the motors are operated, and the output characteristics of each motor are obtained. Further, the first motor is connected to the second inverter circuit and the second motor is connected to the first inverter circuit and then both the motors are operated, and the output characteristics of each motor are obtained. Based on the obtained output characteristics, it is determined whether each of the motors and the inverter circuits is normal or not.
    Type: Application
    Filed: October 5, 2007
    Publication date: April 16, 2009
    Inventor: Akihiko Kanamori
  • Patent number: 6380640
    Abstract: A method of controlling a power output apparatus including an engine, a drive shaft, first and second electric motors and a coupling device is provided. When a hybrid vehicle starts from rest, ECU operates to run the vehicle in EV mode only by means of one of the electric motors. When the operating point of the drive shaft passes a boundary that separates the underdrive region from the overdrive region, and enters the overdrive region, fuel supply to the engine is started so as to start the engine, and the coupling device is controlled so that coupling of the rotary shaft of the second electric motor is switched from the first coupling state in which the rotary shaft is coupled with the drive shaft to the second coupling state in which the rotary shaft is coupled with the output shaft of the engine. After switching, the ECU operates to run the vehicle in HV mode, utilizing the engine and the first and second electric motors.
    Type: Grant
    Filed: September 18, 2000
    Date of Patent: April 30, 2002
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Akihiko Kanamori, Yasutomo Kawabata, Jiro Eto
  • Patent number: 6340847
    Abstract: In a power output apparatus of the present invention, a control unit sets a WOT (wide open throttle) line L2, where the maximum torque of an engine attains, as a boundary between an over drive area and an under drive area in the case where a rotor shaft of an assist motor is set in a state of over drive linkage. The control unit determines a target working point of an outer rotor shaft of a clutch motor, which functions as a drive shaft, based on an externally required output, and selects the WOT line L2 as a performance line of the engine in the case where the target working point of the outer rotor shaft is present in the under drive area. The control unit then sets a switching instruction flag, in order to change the state of linkage of the rotor shaft of the assist motor from the state of over drive linkage to a state of under drive linkage.
    Type: Grant
    Filed: January 18, 2000
    Date of Patent: January 22, 2002
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yasutomo Kawabata, Shigeru Matsuhashi, Nobuyoshi Takagi, Akihiko Kanamori, Eiji Yamada
  • Patent number: 6166499
    Abstract: A power output apparatus 20 implements a smooth switching between the connection of a rotor-rotating shaft 38 of an assist motor 40 with a crankshaft 56 of an engine 50 and the connection of the rotor-rotating shaft 38 of the assist motor 40 with a drive shaft 22, and enables the power output from the engine 50 to be output to the drive shaft 22 with a high efficiency. The power output from the engine 50 is converted to a desired power by a clutch motor 30 having rotors 31 and 33 respectively linked with the crankshaft 56 and the drive shaft 22 and by the assist motor 40 connected to either the crankshaft 56 or the drive shaft 22 via a first clutch 45 and a second clutch 46, and is output to the drive shaft 22. The connection of the assist motor 40 is switched in the state where both the clutches 45 and 46 are set in ON position, when the revolving speed of the engine 50 is made coincident with the revolving speed of the drive shaft 22.
    Type: Grant
    Filed: February 23, 1998
    Date of Patent: December 26, 2000
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Akihiko Kanamori, Yasutomo Kawabata, Norihiko Akao, Hiroaki Urano, Masaru Hirako, Tetsuya Miura
  • Patent number: 6025691
    Abstract: A synchronous motor control system which can freely regulate n-phase electric currents in a synchronous motor to control the characteristics of the synchronous motor. The synchronous motor control system can enhance the output torque per unit weight of a synchronous motor (40) simultaneously with reducing torque ripples. The waveform of three phase alternating currents is freely corrected over a range of +30 degrees from a specified electrical angle, at which a target phase current drawing a sine-wave curve reaches its peak value. It is assumed that this range of .+-.30 degrees corresponds to a range of 0 degree to 60 degrees. By way of example, the waveform is controlled to the peak value of the phase current in a range of 0 degree to 28 degrees. The correction of the phase current is carried out for the target phase which produces the primary magnetic flux of a revolving magnetic field.
    Type: Grant
    Filed: March 10, 1998
    Date of Patent: February 15, 2000
    Assignees: Toyota Jidosha Kabushiki Kaisha, Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Yasutomo Kawabata, Yoshiaki Taga, deceased, by Shigeo Taga, heir, by Takiko Taga, heir, by Tomoyo Taga, heiress, Masatoshi Uchida, Akihiko Kanamori, Yukio Inaguma, Toshinobu Arakawa
  • Patent number: 5936312
    Abstract: The object of the present invention is to carry out control and enable an engine to output a desired power, thereby preventing unexpected charge or discharge of storage battery means. A power output apparatus of the present invention sets energy Pe to be output from an engine, in order to cancel a deviation .DELTA.Pb of a charge-discharge electric power Pb of a battery from its target value Pb* , and controls operation of the engine to output the energy Pe. The energy Pe output from the engine is subjected to torque conversion by means of a clutch motor and an assist motor and output to a drive shaft as a required power. In case that the converted energy is not equal to the required power, the battery is charged with the surplus electric power or is discharged to supplement the shortage of electric power. Namely regulation of the energy Pe results in controlling the charge-discharge electric power Pb of the battery.
    Type: Grant
    Filed: February 26, 1998
    Date of Patent: August 10, 1999
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Satoshi Koide, Yasutomo Kawabata, Eiji Yamada, Akihiko Kanamori, Masatoshi Uchida, Tetsuya Abe, Akihiro Yamanaka, Takeshi Kotani
  • Patent number: 5903112
    Abstract: A power output apparatus (20) of the present invention includes a clutch motor (30), an assist motor (40), and a controller (80) for controlling the clutch motor (30) and the assist motor (40). The clutch motor (30) includes an outer rotor (32) linked with a crankshaft (56) of a gasoline engine (50) and an inner rotor (34) connecting with a drive shaft (22). The assist motor (40) includes a rotor (42) connecting with the drive shaft (22). When the residual capacity of a battery (94) is less than an allowable minimum value, a control CPU (90) of the controller (80) controls a first driving circuit (91) to enable the clutch motor (30) to carry out the power operation and apply a first torque to the drive shaft (22) in the direction of rotation of the drive shaft (22).
    Type: Grant
    Filed: April 26, 1996
    Date of Patent: May 11, 1999
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Eiji Yamada, Takao Miyatani, Yasutomo Kawabata, Akihiko Kanamori
  • Patent number: 5844342
    Abstract: A power output apparatus 20 includes an engine 50, a clutch motor 30 having rotors 31 and 33 respectively linked with a crankshaft 56 and a drive shaft 22, an assist motor 40 attached to a rotor-rotating shaft 38, a first clutch 45 for connecting and disconnecting the rotor-rotating shaft 38 to and from the crankshaft 56, a second clutch 46 for connecting and disconnecting the rotor-rotating shaft 38 to and from the drive shaft 22, and a controller 80 for controlling the motors 30 and 40. The controller 80 operates the clutches 45 and 46 according to the states of the engine 50 and the drive shaft 22 and changes the connection of the rotor-rotating shaft 38, so as to enable power output from the engine 50 to be efficiently converted by the motors 30 and 40 and output to the drive shaft 22.
    Type: Grant
    Filed: July 1, 1997
    Date of Patent: December 1, 1998
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takao Miyatani, Yasutomo Kawabata, Shigetaka Nagamatsu, Eiji Yamada, Tetsuya Miura, Akihiko Kanamori, Shigeru Matsuhashi, Yutaka Taga, Ryuji Toh, Satoshi Koide, Hiroaki Urano, Norihiko Akao, Shinji Kogure, Yoshiaki Taga, deceased, Shigeo Taga, heir, Takiko Taga, heiress
  • Patent number: 5789877
    Abstract: A power transmitting apparatus (20) attached to a crankshaft (56) of an engine (50) includes a clutch motor (30), an assist motor (40), and a controller (80) for controlling the clutch motor (30) and the assist motor (40). When detecting an ignition switch in a starter position, the controller (80) makes a constant current flow through three-phase coils (44) of the assist motor (40) to fix a drive shaft (22) and makes a current flow through three-phase coils (36) of the clutch motor (30) to enable the clutch motor (30) to apply a starter torque TST to the crankshaft (56). This results in cranking the crankshaft (56). Concurrently with the cranking process, fuel injection into the engine (50) and spark ignition are controlled to start the engine (50).
    Type: Grant
    Filed: April 22, 1996
    Date of Patent: August 4, 1998
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Eiji Yamada, Takao Miyatani, Yasutomo Kawabata, Ryouji Mizutani, Akihiko Kanamori
  • Patent number: 5737199
    Abstract: A fail check device and method for switching signal lines, wherein PWM signals are sent out onto PWM signal lines through a PWM signal output/survey circuit. Based on the level of the PWM signals to be sent out and the level of the PWM signals actually sent out, a PWM mismatch signal (logical) is produced. The produced PWM mismatch signal (logical) has a value which indicates a fault when the PWM signal lines are in a state of breakage or short circuit to a ground or the PWM signal lines in a predrive circuit are short-circuited to the positive wiring of a power source. Therefore, by using the PWM mismatch signal (logical), a breakage in the PWM signal lines or a fault in the predrive circuit can be detected by a control CPU.
    Type: Grant
    Filed: July 10, 1996
    Date of Patent: April 7, 1998
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Akihiko Kanamori, Shinji Kogure
  • Patent number: 5437490
    Abstract: A finger module includes a first link module rotating around a first joint shaft; first through third drive modules respectively fixed to the first link module and each having an electric motor, reduction means and output means; a second link module driven and rotated by the second drive module; and a third link module driven and rotated by the third drive module. In a finger module structure of the above finger module, the first through third drive modules and the second link module are separately provided in the first link module, and the third link module is provided in the second link module. A robot hand includes at least two of the finger modules side by side.
    Type: Grant
    Filed: May 18, 1994
    Date of Patent: August 1, 1995
    Assignees: Kabushiki Kaisha Toyota Chuo Kenkyusho, Toyota Jidosha Kabushiki Kaisha, Toyoda Koki Kabushiki Kaisha
    Inventors: Nobuharu Mimura, Masao Kawase, Akihiko Kanamori, Shinji Naruoka, Osamu Toyama