Patents by Inventor Akihiko Takeo

Akihiko Takeo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140139951
    Abstract: According to one embodiment, a perpendicular magnetic recording medium includes a nonmagnetic interlayer formed on a nonmagnetic substrate, an antiferromagnetic layer having a thickness of 2 to 30 nm, a first nonmagnetic underlayer having a thickness of 0.2 to 5 nm, a first bit patterned ferromagnetic layer, a first bit patterned nonmagnetic layer, and a second bit patterned ferromagnetic layer.
    Type: Application
    Filed: January 24, 2014
    Publication date: May 22, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tomoyuki Maeda, Yousuke Isowaki, Akira Watanabe, Akihiko Takeo
  • Patent number: 8717705
    Abstract: According to one embodiment, a magnetic recording head includes a facing surface configured to face a recording medium, a main magnetic pole configured to apply a recording magnetic field to a recording layer of the recording medium, and a high-frequency oscillator disposed near to a trailing side of the main magnetic pole and configured to apply a high-frequency magnetic field to the recording layer. An angle defined between a recording magnetic field applied from the main magnetic pole to the recording medium and the facing surface is 0 to 85° in a region between a trailing side end of the main magnetic pole and a trailing side end of the high-frequency oscillator.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: May 6, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kenichiro Yamada, Naoyuki Narita, Katsuhiko Koui, Akihiko Takeo
  • Publication number: 20140120375
    Abstract: According to one embodiment, a magnetic recording medium manufacturing method includes a step of coating the mask layer with a metal fine particle coating solution containing metal fine particles and a first solvent, thereby forming a metal fine particle coating layer having a multilayered structure of the metal fine particles, and a step of dropping, on the coating layer, a second solvent having a second solubility parameter having a difference of 0 to 12.0 from a first solubility parameter of the first solvent, thereby forming a monolayered metal fine particle film by washing away excessive metal fine particles and changing the multilayered structure of the metal fine particles into a monolayer. The projections pattern is made of the monolayered metal fine particle film.
    Type: Application
    Filed: January 29, 2013
    Publication date: May 1, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kazutaka TAKIZAWA, Kaori KIMURA, Akira WATANABE, Akihiko TAKEO
  • Publication number: 20140120249
    Abstract: According to one embodiment, in a magnetic recording medium manufacturing method, an inversion liftoff layer and pattern formation layer are formed on a layer on which an inverted pattern is to be formed, a depressions pattern is formed by patterning the pattern formation layer and transferred to the inversion liftoff layer, the surface of the layer on which an inverted pattern is to be formed is exposed by removing the inversion liftoff layer from depressions, an inversion layer is formed on the inversion liftoff layer and exposed layer, and the inversion liftoff layer is removed, thereby forming, on the exposed layer, an inversion layer having a projections pattern obtained by inverting the depressions pattern.
    Type: Application
    Filed: February 6, 2013
    Publication date: May 1, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kaori KIMURA, Kazutaka TAKIZAWA, Akira WATANABE, Takeshi IWASAKI, Akihiko TAKEO
  • Patent number: 8703621
    Abstract: A manufacturing method of a magnetic recording medium according to one embodiment includes forming a mask layer having a pattern regularly arranged in a longitudinal direction on a magnetic recording medium containing a substrate and a magnetic recording layer, forming a recording portion having a magnetic pattern and a non-recording portion by patterning the magnetic recording layer, and submitting the mask layer to a peeling liquid to peel the mask layer. The mask layer contains a lamination layer of a lift-off layer, a first hard mask, and a second hard mask. The second hard mask is formed of a material that is different from the material of the first hard disk and the material is dissolvable in the same peeling liquid as the peeling liquid that dissolves the lift-off layer.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: April 22, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kaori Kimura, Kazutaka Takizawa, Masatoshi Sakurai, Akihiko Takeo
  • Patent number: 8685491
    Abstract: According to one embodiment, a method of manufacturing a magnetoresistive element includes a layered structure and a pair of electrodes, the layered structure including a cap layer, a magnetization pinned layer, a magnetization free layer, a spacer layer and a functional layer provided in the magnetization pinned layer, between the magnetization pinned layer and the spacer layer, between the spacer layer and the magnetization free layer, in the magnetization free layer, or between the magnetization free layer and the cap layer and including an oxide, the method including forming a film including a base material of the functional layer, performing an oxidation treatment on the film using a gas containing oxygen in a form of at least one selected from the group consisting of molecule, ion, plasma and radical, and performing a reduction treatment using a reducing gas on the film after the oxidation treatment.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: April 1, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akihiko Takeo, Yoshihiko Fuji, Hiromi Yuasa, Michiko Hara, Shuichi Murakami, Hideaki Fukuzawa
  • Publication number: 20140078620
    Abstract: According to one embodiment, a magnetic recording head manufacturing method includes forming a spin torque oscillator layer on a main magnetic pole layer, forming a mask on the spin torque oscillator layer, processing the spin torque oscillator layer by performing ion beam etching through the mask, and partially modifying the main magnetic pole layer through the mask. The partially modifying the main magnetic pole layer makes it possible to decrease the saturation flux density of the main magnetic pole layer in the modified portion, and form an unmodified main magnetic pole portion covered with the mask, and a modified portion around the main magnetic pole.
    Type: Application
    Filed: January 29, 2013
    Publication date: March 20, 2014
    Applicants: TDK CORPORATION, KABUSHIKI KAISHA TOSHIBA
    Inventors: Satoshi SHIROTORI, Katsuhiko KOUI, Shinobu SUGIMURA, Norihito FUJITA, Akihiko TAKEO, Min LI, Ruhang DING
  • Patent number: 8675308
    Abstract: According to one embodiment, a magnetic recording head includes a disk-facing surface configured to face a recording layer of a recording medium, a main magnetic pole includes a distal end located on the disk-facing surface and configured to apply a recording magnetic field to the recording layer of the recording medium, a leading shield on a leading side of the main magnetic pole, opposed to the distal end of the main magnetic pole across a gap, a high-frequency oscillator between the leading shield and the distal end of the main magnetic pole, and a recording coil configured to excite the main magnetic pole with a magnetic field.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: March 18, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kenichiro Yamada, Takuya Matsumoto, Naoyuki Narita, Tomoko Taguchi, Katsuhiko Koui, Akihiko Takeo
  • Publication number: 20140009853
    Abstract: According to one embodiment, a magnetic head manufacturing method includes forming a protective layer on the surfaces of a main magnetic pole layer, a processed spin torque oscillator, and a mask formed on the spin torque oscillator, and further performing ion beam etching on the main magnetic pole layer and the protective layer on the surface of the main magnetic pole layer through the mask such that the protective layer is left behind on the side surfaces of the spin torque oscillator and removed from the surface of the main magnetic pole layer, thereby processing the main magnetic pole layer such that its side surfaces have a shape tapered toward the substrate.
    Type: Application
    Filed: October 22, 2012
    Publication date: January 9, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Satoshi Shirotori, Katsuhiko Koui, Shinobu Sugimura, Norihito Fujita, Akihiko Takeo
  • Publication number: 20140002924
    Abstract: According to one embodiment, a magnetic recording head includes a disk-facing surface configured to face a recording layer of a recording medium, a main magnetic pole includes a distal end located on the disk-facing surface and configured to apply a recording magnetic field to the recording layer of the recording medium, a leading shield on a leading side of the main magnetic pole, opposed to the distal end of the main magnetic pole across a gap, a high-frequency oscillator between the leading shield and the distal end of the main magnetic pole, and a recording coil configured to excite the main magnetic pole with a magnetic field.
    Type: Application
    Filed: November 19, 2012
    Publication date: January 2, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kenichiro YAMADA, Takuya MATSUMOTO, Naoyuki NARITA, Tomoko TAGUCHI, Katsuhiko KOUI, Akihiko TAKEO
  • Publication number: 20140004272
    Abstract: According to one embodiment, there is provided a magnetic recording medium manufacturing method including forming a resist layer on a magnetic recording layer, patterning the resist layer, forming a magnetic pattern by performing ion implantation through the resist layer, partially modifying the surface of the magnetic recording layer, removing the resist, applying a self-organization material to the surface of the magnetic recording layer and forming a dotted mask pattern, and patterning the magnetic recording layer.
    Type: Application
    Filed: October 23, 2012
    Publication date: January 2, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kaori KIMURA, Masatoshi SAKURAI, Kazuto KASHIWAGI, Akihiko TAKEO
  • Publication number: 20140002929
    Abstract: A manufacturing method of a magnetic recording medium includes follows: forming a magnetic recording layer on a substrate; forming an under layer and a metal release layer that forms an alloy with the under layer on the magnetic recording layer in this order and forming an alloyed release layer by alloying the under layer and the metal release layer; forming a mask layer on the alloyed release layer; forming a resist layer on the mask layer; providing a protrusion-recess pattern by patterning the resist layer; transferring the protrusion-recess pattern to the mask layer; transferring the protrusion-recess pattern to the alloyed release layer; transferring the protrusion-recess pattern to the magnetic recording layer; dissolving the alloyed release layer by using a stripping solution and removing a layer formed on the alloyed release layer from an upper side of the magnetic recording layer.
    Type: Application
    Filed: October 24, 2012
    Publication date: January 2, 2014
    Inventors: Kazutaka TAKIZAWA, Akira Watanabe, Kaori Kimura, Takeshi Iwasaki, Akihiko Takeo
  • Patent number: 8593913
    Abstract: According to one embodiment, a magnetic recording device includes: a magnetic recording medium provided with data regions for data recording; a light output module which outputs an optical signal to be applied to a recording position where recording data is recorded of the data regions; a write head which records the recoding data at the recording position magnetically; a light quantity setting module which sets a light quantity value of the optical signal output from the light output module; a heat-assisted recording controller which performs a control so that the recording data is recorded by the write head at the recording position which is heat-assisted by applying an optical signal with the set light quantity value; and a controller which adjusts the light quantity value of the optical signal set by the light quantity setting module using the recording position being a part of the data regions.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: November 26, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yuichi Yamada, Akihiko Takeo, Hiroshi Isokawa
  • Patent number: 8553359
    Abstract: A magnetic recording head includes a magnetic pole, a spin torque oscillator, a first shield and a second shield. The magnetic pole has an air-bearing surface. The spin torque oscillator is provided so that a first side of the spin torque oscillator faces the magnetic pole in a first direction parallel to the air-bearing surface. The first shield includes a granular magnetic material, and is provided so that two portions of the first shield sandwich the spin torque oscillator in a second direction which is parallel to the air-bearing surface and perpendicular to the first direction. The second shield is provided on a second side of the spin torque oscillator opposite to the first side.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: October 8, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kenichiro Yamada, Katsuhiko Koui, Mariko Kitazaki, Masayuki Takagishi, Tomomi Funayama, Masahiro Takashita, Soichi Oikawa, Akihiko Takeo
  • Publication number: 20130252029
    Abstract: In a removing step, a phase-separated release solution including a first phase containing a first solvent capable of dissolving a release layer and a second phase containing a second solvent having a property of separating from the first solvent is prepared, and a patterned magnetic recording medium is dipped in the first phase together with a release layer, mask layer, and resist layer remaining on a magnetic recording layer, thereby removing the release layer. After that, the patterned magnetic recording medium is moved to the second phase, and separated from the first phase containing the release layer and the layers remaining on the release layer.
    Type: Application
    Filed: August 30, 2012
    Publication date: September 26, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Kazutaka Takizawa, Akira Watanabe, Kaori Kimura, Akihiko Takeo
  • Publication number: 20130248485
    Abstract: A manufacturing method of a magnetic recording medium includes steps of forming a magnetic recording layer, a first mask layer, a second mask layer containing silicon as primary component, a strip layer, a third mask layer, and a resist layer, a step of patterning the resist layer to provide a pattern, steps of transferring the pattern to the third mask layer, to the strip layer, and to the second mask layer, a step of removing the strip layer by wet etching and of stripping the third mask layer and the resist layer above the magnetic recording layer, steps of transferring the pattern to the first mask layer and to the magnetic recording layer, and a step of stripping the first mask layer remaining on the magnetic recording layer.
    Type: Application
    Filed: September 7, 2012
    Publication date: September 26, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Akira Watanabe, Kaori Kimura, Kazutaka Takizawa, Takeshi Iwasaki, Tsuyoshi Onitsuka, Akihiko Takeo
  • Patent number: 8512884
    Abstract: A perpendicular magnetic recording medium including at least a soft under layer, an orientation control layer, a magnetic recording layer and a protective layer on a non-magnetic substrate, wherein the orientation control layer is composed of three or more layers including a seed layer, a first intermediate layer and a second intermediate layer sequentially, formed in that order from the substrate side, the crystal grains that constitute the first intermediate layer are epitaxially grown on the crystal grains of the seed layer, the crystal grains that constitute the second intermediate layer are epitaxially grown on the crystal grains of the first intermediate layer, and the crystal grains that constitute the second intermediate layer are finer than the crystal grains that constitute the first intermediate layer.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: August 20, 2013
    Assignees: Showa Denko K.K., Kabushiki Kaisha Toshiba, Tohoku University
    Inventors: Migaku Takahashi, Shin Saito, Gohei Kurokawa, Yuzo Sasaki, Tatsu Komatsuda, Atsushi Hashimoto, Akihiko Takeo, Tomoyuki Maeda
  • Publication number: 20130180948
    Abstract: According to one embodiment, a release layer is formed on a magnetic recording layer, a mask layer is formed on the release layer, projecting patterns are formed on the mask layer, the projecting patterns are transferred onto the mask layer, the projecting patterns are transferred onto the release layer, the projecting patterns are transferred onto the magnetic recording layer, the release layer is removed by a solvent, and a remaining mask layer is removed from the surface of the magnetic recording layer. The release layer is made of a polymeric material. The mask layer is made of at least one of a metal or a metal compound. The projecting patterns are formed by using a self-organized layer made of a block copolymer having at least two of polymer chains.
    Type: Application
    Filed: July 27, 2012
    Publication date: July 18, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kazutaka TAKIZAWA, Akira WATANABE, Kaori KIMURA, Takeshi IWASAKI, Tsuyoshi ONITSUKA, Akihiko TAKEO
  • Publication number: 20130182351
    Abstract: A perpendicular magnetic recording medium according to an embodiment includes a substrate and perpendicular magnetic recording layer. The perpendicular magnetic recording layer includes a recording portion and non-recording portion. The recording portion has patterns regularly arranged in the longitudinal direction, and includes magnetic layers containing Fe or Co and Pt as main components, and at least one additive component selected from Ti, Si, Al, and W. The non-recording portion includes oxide layers formed by oxidizing the side surfaces of the magnetic layers, and nonmagnetic layers formed between the oxide layers.
    Type: Application
    Filed: July 19, 2012
    Publication date: July 18, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Takeshi IWASAKI, Kazutaka TAKIZAWA, Akira WATANABE, Kaori KIMURA, Akihiko TAKEO
  • Patent number: 8467149
    Abstract: According to one embodiment, a spin torque oscillator includes a field generation layer, a spin injection layer including a first layer and a second layer, and an interlayer interposed between the field generation layer and the spin injection layer, wherein the first layer is interposed between the second layer and the interlayer and includes a (001)-oriented Heuslar magnetic alloy or a (001)-oriented magnetic material having a body-centered cubic lattice structure.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: June 18, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akihiko Takeo, Norihito Fujita, Mariko Kitazaki, Katsuhiko Koui, Hitoshi Iwasaki