Patents by Inventor Akihiro Hosokawa

Akihiro Hosokawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7652223
    Abstract: Embodiments of the invention provide a method of welding sputtering target tiles to form a large sputtering target. Embodiments of a sputtering target assembly with welded sputtering target tiles are also provided.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: January 26, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Yoshiaki Tanase, Akihiro Hosokawa
  • Patent number: 7644745
    Abstract: A target assembly including a plurality of target tiles bonded to a backing plate by adhesive, for example of indium or conductive polymer, filled into recesses in the backing plate formed beneath each of the target tiles. A sole peripheral recess formed as a rectangular close band may be formed inside the tile periphery. Additional recesses may be formed inside the peripheral recess, preferably symmetrically arranged about perpendicular bisectors of rectangular tiles. The depth and width of the recesses may be varied to control the amount of stress and the stress direction.
    Type: Grant
    Filed: June 6, 2005
    Date of Patent: January 12, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Hien-Minh Huu Le, Akihiro Hosokawa
  • Patent number: 7641434
    Abstract: One embodiment relates to a loadlock having a first support structure therein to support one unprocessed substrate and a second support structure therein to support one processed substrate. The first support structure is located above the second support structure. The loadlock includes an elevator to control the vertical position of the support structures. The loadlock also includes a first aperture to permit insertion of an unprocessed substrate into the loadlock and removal of a processed substrate from the loadlock, as well as a second aperture to permit removal of an unprocessed substrate from the loadlock and insertion of a processed substrate into the loadlock. A cooling plate is also located in the loadlock. The cooling plate includes a surface adapted to support a processed substrate thereon. A heating device may be located in the loadlock above the first support structure.
    Type: Grant
    Filed: May 10, 2004
    Date of Patent: January 5, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Shinichi Kurita, Wendell T. Blonigan, Akihiro Hosokawa
  • Patent number: 7628899
    Abstract: The present invention generally provides an apparatus and method for processing a surface of a substrate in a PVD chamber that has a magnetron assembly whose shape can be distorted to adjust the magnetic field strength in the processing region of the deposition chamber to improve the deposition uniformity. In general, aspects of the present invention can be used for flat panel display processing, semiconductor processing, solar cell processing, or any other substrate processing. In one aspect, the processing chamber contains one or more magnetron regions and magnetron actuators that are used to increase and more evenly distribute the magnetic field strength throughout the processing region of the processing chamber during processing.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: December 8, 2009
    Assignee: Applied Materials, Inc.
    Inventors: John M. White, Hien-Minh H. Le, Akihiro Hosokawa
  • Publication number: 20090239384
    Abstract: A discharge hole of a lower nozzle is directed at an angle of 5 degrees to 40 degrees slanting inward with respect to a normal to the upper surface of a bottom plate. Thus, the flow pressure of a processing solution discharged through the discharge hole is not excessively reduced. Further, a circulation area of the processing solution does not expand widely in an inner bath. As a result, the processing solution in the inner bath is effectively displaced while the processing solution smoothly flows into gaps between substrates.
    Type: Application
    Filed: February 12, 2009
    Publication date: September 24, 2009
    Inventors: Kunio Fujiwara, Akihiro Hosokawa, Kozo Terashima, Atsushi Osawa
  • Patent number: 7566900
    Abstract: Embodiments of an apparatus and method of monitoring and controlling a large area substrate processing chamber are provided. Multiple types of metrology tools can be installed in the substrate processing system to measure film properties after substrate processing in a processing chamber. Several number of a particular type of metrology tools can also be installed in the substrate processing system to measure film properties after substrate processing in a processing chamber. The metrology tools can be installed in a metrology chamber, a process chamber, a transfer chamber, or a loadlock.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: July 28, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Hienminh Huu Le, Akihiro Hosokawa
  • Patent number: 7550055
    Abstract: Embodiments of the present invention generally relate to sputtering targets used in semiconductor manufacturing. In particular, the invention relates to bonding the sputtering target to a backing plate that supports the sputtering target in a deposition chamber. In one embodiment, a method of bonding at least one sputtering target tile to a backing plate comprises providing an elastomeric adhesive layer between the at least one sputtering target tile and the backing plate, and providing at least one metal mesh within the elastomeric adhesive layer, wherein at least a portion of the at least one metal mesh contacts both the at least one sputtering target tile and the backing plate, and the at least a portion of the at least one metal mesh is made of metal wire with diameter greater than 0.5 mm.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: June 23, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Hienminh H. Le, Akihiro Hosokawa
  • Publication number: 20090108671
    Abstract: A vehicle drive apparatus independently controls drive forces for a front-right drive wheel, a front-left drive wheel, a rear-right drive wheel, and a rear-left drive wheel using a front-right electric motor, a front-left electric motor, a rear-right electric motor, and a rear-left electric motor, respectively. The drive forces for the drive wheels of a vehicle incorporating the vehicle drive apparatus are determined based on the target moments in the yaw and roll directions of the vehicle, the total drive for the drive wheels, and the drive reaction forces at the drive wheels. Thus, the performance desired by the driver can be achieved, and the drivability therefore improves accordingly.
    Type: Application
    Filed: June 21, 2007
    Publication date: April 30, 2009
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yoshinori Maeda, Akihiro Hosokawa, Yousuke Suzuki, Michitaka Tsuchida, Kazuya Okumura, Tadahiro Oshiumi, Kensuke Yoshizue, Koji Sugiyama
  • Patent number: 7505832
    Abstract: Embodiments of a method and apparatus for determining a substrate exchange position in a processing system are provided. In one embodiment, a method of determining a substrate exchange position in a processing system includes determining an initial exchange position within a processing chamber, and resolving a change in the exchange position. The step of resolving may further include the step of sensing a change in temperature of a facet of a transfer chamber having the processing chamber coupled thereto, sensing a change in a state of the system, or sensing a change in position of the processing chamber, among others.
    Type: Grant
    Filed: March 16, 2004
    Date of Patent: March 17, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Dongchoon Suh, Akihiro Hosokawa, Hung The Nguyen
  • Publication number: 20090069149
    Abstract: A braking force control device includes: a brake control device that controls a mechanical brake braking torque by operating electric actuators so as to achieve a requested brake braking torque; a motor control device that controls a motor torque by operating motors so as to achieve the requested motor torque; a requested braking torque calculation device that calculates the requested braking torques of wheels; a battery requested electric power calculation device that finds a battery requested electric power based on target amounts of electricity charged in batteries; and an individual braking torque calculation device that finds the requested motor torque and the requested brake braking torque that cause the requested braking torque to be generated based on the battery requested electric power and the requested braking torque.
    Type: Application
    Filed: September 12, 2007
    Publication date: March 12, 2009
    Applicant: TOYOTA JODOSHA KABUSHIKI KAISHA
    Inventors: Kazuya Okumura, Kensuke Yoshizue, Akihiro Hosokawa, Yoshinori Maeda, Naoki Moriguchi, Kouji Sugiyama
  • Publication number: 20090051216
    Abstract: An object of the present invention is to achieve a braking-driving force and a yaw moment required for a vehicle to a possible extent within a range of braking-driving forces which the front and rear wheels can generate, when a target braking-driving force and a target yaw moment of the vehicle cannot be achieved by means of braking-driving forces that can be generated by the individual wheels. A target braking-driving force Fvn and a target yaw moment Mvn of the entire vehicle are calculated, and when the target braking-driving force Fvn and the target yaw moment Mvn cannot be achieved by means of the braking-driving forces of the front wheels, a target braking-driving force Fvft and a target yaw moment Mvft of the front wheels are adjusted such that the magnitudes of the braking-driving force and yaw moment of the vehicle produced by means of the braking-driving forces of the front wheels become the maximum at a ratio between Fvn and Mvn.
    Type: Application
    Filed: December 15, 2006
    Publication date: February 26, 2009
    Inventors: Yoshinori Maeda, Yasuhiro Oshiumi, Michitaka Tsuchida, Kazuya Okumura, Kensuke Yoshizue, Akihiro Hosokawa, Koji Sugiyama
  • Publication number: 20090007601
    Abstract: Provided is an ozone generator (47) including two sheets of ozone generating electrodes (156, 157). These two ozone generating electrodes (156, 157) are arranged in a treating passage (152) in series along an air flowing direction. Thus, the air to come in from an air inlet port flows at first along the ozone generating electrode (156) of the first sheet, and receives, while flowing, the creeping discharge of the first ozone generating electrode (156) thereby to generate the ozone. The air thus having generated the ozone further flows in the treating passage (152) to the ozone generating electrode (157) of the second sheet, and receives, while flowing, the creeping discharge of the second ozone generating electrode (157) thereby to generate the additional ozone. The highly dense ozone can be used to clean the washing water.
    Type: Application
    Filed: December 19, 2006
    Publication date: January 8, 2009
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Masami Suzuki, Akihiro Hosokawa
  • Publication number: 20080296352
    Abstract: The present invention generally comprises a method and apparatus for bonding a cylindrical sputtering target to a backing tube. The cylindrical sputtering target may be disposed over the outside surface of the backing tube and melted bonding material may be vacuum pulled through the gap formed between the sputtering target and the backing tube. By vacuum pulling the melted bonding material through the gap, the amount of air bubbles or pockets present within the bonding material between the sputtering target and the backing tube may be reduced.
    Type: Application
    Filed: May 30, 2007
    Publication date: December 4, 2008
    Inventors: AKIHIRO HOSOKAWA, Dieter Haas
  • Patent number: 7442900
    Abstract: Embodiments of the present invention generally provide an apparatus for providing a uniform thermal profile to a plurality of large area substrates during thermal processing. In one embodiment, an apparatus for thermal processing large area substrates includes a chamber having a plurality of processing zones disposed therein that are coupled to a lift mechanism. The lift mechanism is adapted to vertically position the plurality of processing zones within the chamber. Each processing zone further includes an upper heated plate, a lower heated plate adapted to support a first substrate thereon and an unheated plate adapted to support a second substrate thereon, wherein the unheated plate is disposed between the upper and lower heated plates.
    Type: Grant
    Filed: April 3, 2006
    Date of Patent: October 28, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Makoto Inagawa, Akihiro Hosokawa
  • Patent number: 7432184
    Abstract: A method for making a film stack containing one or more metal-containing layers and a substrate processing system for forming the film stack on a substrate are provided. The substrate processing system includes at least one transfer chamber coupled to at least one load lock chamber, at least one first physical vapor deposition (PVD) chamber configured to deposit a first material layer on a substrate, and at least one second PVD chamber for in-situ deposition of a second material layer over the first material layer within the same substrate processing system without breaking the vacuum or taking the substrate out of the substrate processing system to prevent surface contamination, oxidation, etc. The substrate processing system is configured to provide high throughput and compact footprint for in-situ sputtering of different material layers in designated PVD chambers.
    Type: Grant
    Filed: August 26, 2005
    Date of Patent: October 7, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Akihiro Hosokawa, Makoto Inagawa, Hienminh Huu Le, John M. White
  • Publication number: 20080237188
    Abstract: Mutually different plural kinds of processing liquid are sequentially supplied to a gap space in which a substrate is arranged to perform a wet processing to the substrate with respect to each processing liquid. Further, the processing liquid used in the wet processing is sequentially released from the communicating portion upon execution of each wet processing. The liquid retrieval tanks are selectively positioned at a retrieval position corresponding to the kind of processing liquid released from the communicating portion by relatively moving the processing unit and the liquid retrieval unit. The liquid retrieval unit is separated from the processing unit and is arranged below the processing unit. The processing liquid is released from the communicating portion of the processing unit to below the gap space downwards vertically.
    Type: Application
    Filed: February 13, 2008
    Publication date: October 2, 2008
    Inventors: Itsuki Kajino, Akihiro Hosokawa, Kozo Terashima
  • Patent number: 7429718
    Abstract: A substrate support assembly and method for controlling the temperature of a substrate within a process chamber are provided. A substrate support assembly includes an thermally conductive body comprising a stainless steel material, a substrate support surface on the surface of the thermally conductive body and adapted to support a large area substrate thereon, one or more heating elements embedded within the thermally conductive body, a cooling plate positioned below the thermally conductive body, a base support structure comprising a stainless steel material, positioned below the cooling plate and adapted to structurally support the thermally conductive body, and one or more cooling channels adapted to be supported by the base support structure and positioned between the cooling plate and the base support structure. A process chamber comprising the substrate support assembly of the invention is also provided.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: September 30, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Makoto Inagawa, Akihiro Hosokawa
  • Publication number: 20080067058
    Abstract: The present invention generally comprises a monolithic sputtering target assembly for depositing material onto large area substrates. The sputtering target assembly may comprise both the sputtering target and the backing plate in one monolithic structure. By having the backing plate and sputtering target as a monolithic structure, bonding is not necessary. Additionally, cooling channels may be drilled into the monolithic structure so that cooling fluid may flow within the sputtering target assembly without the need for a separate cooling assembly resting on back of the sputtering target assembly.
    Type: Application
    Filed: September 7, 2007
    Publication date: March 20, 2008
    Inventors: BRADLEY O. STIMSON, Akihiro Hosokawa, Makoto Inagawa
  • Publication number: 20080029387
    Abstract: A magnetron assembly including one or more magnetrons each forming a closed plasma loop on the sputtering face of the target. The target may include multiple strip targets on which respective strip magnetrons roll and are partially supported on a common support plate through a spring mechanism. The strip magnetron may be a two-level folded magnetron in which each magnetron forms a folded plasma loop extending between lateral sides of the strip target and its ends meet in the middle of the target. The magnets forming the magnetron may be arranged in a pattern having generally uniform straight portions joined by curved portion in which extra magnet positions are available near the corners to steer the plasma track. Multiple magnetrons, possibly flexible, may be resiliently supported on a scanned support plate and individually partially supported by rollers on the back of one or more targets.
    Type: Application
    Filed: July 20, 2007
    Publication date: February 7, 2008
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Makoto INAGAWA, Hien Minh Huu LE, Akihiro HOSOKAWA, Bradley O. STIMSON, John M. WHITE
  • Publication number: 20080011601
    Abstract: A physical vapor deposition (PVD) apparatus and a PVD method are disclosed. Extending an anode across the processing space between the target and the substrate may increase deposition uniformity on a substrate. The anode provides a path to ground for electrons that are excited in the plasma and may uniformly distribute the electrons within the plasma across the processing space rather than collect at the chamber walls. The uniform distribution of the electrons within the plasma may create a uniform deposition of material on the substrate. The anodes may be cooled with a cooling fluid to control the temperature of the anodes and reduce flaking. The anodes may be disposed across the process space perpendicular to the long side of a magnetron that may scan in two dimensions across the back of the sputtering target. The scanning magnetron may reduce localized heating of the anode.
    Type: Application
    Filed: June 29, 2007
    Publication date: January 17, 2008
    Inventors: ALLEN KA-LING LAU, Makoto Inagawa, Bradley O. Stimson, Akihiro Hosokawa