Patents by Inventor Akihiro Uenishi

Akihiro Uenishi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190249282
    Abstract: A steel sheet includes a predetermined chemical composition and a metal structure represented by, in area fraction, ferrite: 50% to 95%, granular bainite: 5% to 48%, tempered martensite: 2% to 30%, upper bainite, lower bainite, fresh martensite, retained austenite, and pearlite: 5% or less in total, and the product of the area fraction of the tempered martensite and a Vickers hardness of the tempered martensite: 800 to 10500.
    Type: Application
    Filed: January 31, 2017
    Publication date: August 15, 2019
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Katsuya NAKANO, Kunio HAYASHI, Yuri TODA, Eisaku SAKURADA, Akihiro UENISHI
  • Publication number: 20190226046
    Abstract: A steel sheet according to an aspect of the present invention has a chemical composition within a predetermined range; in which a metallographic structure at a thickness ¼ portion includes, by unit area %, ferrite: 10% or more and less than 50%, granular bainite: 5% or more and less than 50%, and martensite: 20% or more and less than 60%; in the metallographic structure at the thickness ¼ portion, a total of upper bainite, lower bainite, residual austenite, and pearlite is 0% or more and less than 15% by unit area %; at the thickness ¼ portion, a product of an area ratio Vm of the martensite and an average hardness Hv of the martensite is 12,000 to 34,000; and a tensile strength is 980 MPa or higher.
    Type: Application
    Filed: September 13, 2016
    Publication date: July 25, 2019
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yuri TODA, Kunio HAYASHI, Katsuya NAKANO, Hiroyuki KAWATA, Akihiro UENISHI
  • Publication number: 20190218652
    Abstract: In a metal coated steel sheet, a chemical composition contains, in mass %, at least C: 0.03% to 0.70%, Si: 0.25% to 2.50%, Mn: 1.00% to 5.00%, P: 0.100% or less, S: 0.010% or less, sol. Al: 0.001% to 2.500, N: 0.020% or less, and a balance composed of iron and impurities, a metal structure contains greater than 5.0 vol % of retained austenite and greater than 5.0 vol % of tempered martensite, and satisfies a C content in the retained austenite being 0.85 mass % or more.
    Type: Application
    Filed: October 19, 2016
    Publication date: July 18, 2019
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Jun HAGA, Kohichi SANO, Koutarou HAYASHI, Kunio HAYASHI, Masaharu KAMEDA, Akihiro UENISHI, Hiroyuki KAWATA
  • Publication number: 20190211427
    Abstract: A steel sheet according to an aspect of the present invention includes a predetermined chemical composition; in which a metallographic structure in a ¼ t portion contains residual austenite of 4 volume % to 70 volume %; [Mn]?/[Mn]ave>1.5 is satisfied in the ¼ t portion; f?s/f??0.30 and [C]×[Mn]?0.15 are satisfied in the ¼ t portion.
    Type: Application
    Filed: September 21, 2016
    Publication date: July 11, 2019
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kohichi SANO, Masafumi AZUMA, Mutsumi SAKAKIBARA, Akihiro UENISHI, Koutarou HAYASHI
  • Publication number: 20190144966
    Abstract: A steel sheet includes a predetermined chemical composition, and includes a steel microstructure represented by, in an area ratio, ferrite: 5% to 80%, a hard microstructure constituted of bainite, martensite or retained austenite or an arbitrary combination of the above: 20% to 95%, and a standard deviation of a line fraction of the hard microstructure on a line in a plane perpendicular to a thickness direction: 0.050 or less in a depth range where a depth from a surface when a thickness of a steel sheet is set as t is from 3t/8 to t/2.
    Type: Application
    Filed: August 8, 2017
    Publication date: May 16, 2019
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Shohei YABU, Akihiro UENISHI, Koutarou HAYASHI
  • Patent number: 10202623
    Abstract: An object of the present invention is to provide a series of techniques for producing 1,4-butanediol from methanol or the like. Provided is a recombinant cell prepared by introducing a gene encoding at least one enzyme selected from the group consisting of succinate semialdehyde dehydrogenase, succinyl-CoA synthase, CoA-dependent succinate semialdehyde dehydrogenase, 4-hydroxybutyrate dehydrogenase, 4-hydroxybutyryl-CoA transferase, 4-hydroxybutyryl-CoA reductase, 4-hydroxybutyraldehyde dehydrogenase, and alcohol dehydrogenase, into a host cell which is a methylotroph, wherein the gene is expressed in the host cell, and the recombinant cell is capable of producing 1,4-butanediol from at least one C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide.
    Type: Grant
    Filed: January 20, 2014
    Date of Patent: February 12, 2019
    Assignee: SEKISUI CHEMICAL CO., LTD.
    Inventors: Masahiro Furutani, Akihiro Uenishi, Koichiro Iwasa
  • Patent number: 10196726
    Abstract: Provided is a high-strength hot-rolled steel sheet consisting of, in mass %, C: 0.01% to 0.2%, Si: 0% to 2.5%, Mn: 0% to 4.0%, Al: 0% to 2.0%, N: 0% to 0.01%, Cu: 0% to 2.0%, Ni: 0% to 2.0%, Mo: 0% to 1.0%, V: 0% to 0.3%, Cr: 0% to 2.0%, Mg: 0% to 0.01%, Ca: 0% to 0.01%, REM: 0% to 0.1%, B: 0% to 0.01%, P: less than or equal to 0.10%, S: less than or equal to 0.03%, O: less than or equal to 0.01%, one or both of Ti and Nb: 0.01% to 0.30% in total, and the balance being Fe and inevitable impurities. The steel sheet has a structure in which a total volume fraction of tempered martensite or lower bainite is 90% or more, a dislocation density thereof is greater than or equal to 5×1013 (1/m2) and less than or equal to 1×1016 (1/m2) and 1×106 (numbers/mm2) or more iron-based carbides are included therein.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: February 5, 2019
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Masafumi Azuma, Hiroshi Shuto, Tatsuo Yokoi, Yuuki Kanzawa, Akihiro Uenishi
  • Publication number: 20180298462
    Abstract: A steel sheet for galvannealed steel contains, by mass %, C: 0.25 to 0.70%, Si: 0.25 to 2.50%, Mn: 1.00 to 5.00%, Al: 0.005 to 3.50%, P: 0.15% or less, S: 0.03% or less, N £ 0.02%, O £ 0.01%, and optionally one or more selected from Ti, Nb, V, Cr, Mo, Cu, Ni, B, Ca, REM, Mg, W, Zr, Sb, Sn, As, Te, Y, Hf and Co, a balance being Fe and impurities. The microstructure consists of, by vol. %, retained g: 10.0 to 60.0%, high-temperature tempered martensite3 5.0%, low-temperature tempered martensite3 5.0%, fresh martensite £ 10.0%, a: 0 to 15.0%, P: 0 to 10.0%, a balance being bainite. Total volume ratio of tempered martensite and bainite is 30.0% or more, tensile strength is 1470 MPa or more, tensile strength×uniform elongation is 13000 MPa % or more, and tensile strength×local elongation is 5000 MPa % or more.
    Type: Application
    Filed: June 10, 2016
    Publication date: October 18, 2018
    Inventors: Kohichi SANO, Jun HAGA, Koutarou HAYASHI, Hiroyuki KAWATA, Riki OKAMOTO, Akihiro UENISHI
  • Publication number: 20180237881
    Abstract: A steel sheet includes: a predetermined chemical composition; and a steel structure containing, in are a fraction, 2% or more of ferrite and bainite, in which an average dislocation density in the ferrite and an average dislocation density in the bainite are both h3×1012 m/m3 to 1×1014 m/m3, and an average grain diameter of the ferrite and the bainite is 5 ?m or less.
    Type: Application
    Filed: August 21, 2015
    Publication date: August 23, 2018
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Riki OKAMOTO, Hiroyuki KAWATA, Masafumi AZUMA, Akihiro UENISHI, Naoki MARUYAMA
  • Publication number: 20180230581
    Abstract: A steel sheet includes: a predetermined chemical composition; and a steel structure represented by, in area %, first martensite in which two or more iron carbides each having a circle-equivalent diameter of 2 nm to 500 nm are contained in each lath: 20% to 95%, ferrite: 15% or less, retained austenite: 15% or less, and the balance: bainite, or second martensite in which less than two iron carbides each having a circle-equivalent diameter of 2 nm to 500 nm are contained in each lath, or the both of these, in which the total area fraction of ND//<111> orientation grains and ND//<100> orientation grains is 40% or less, and the content of solid-solution C is 0.44 ppm or more.
    Type: Application
    Filed: August 31, 2015
    Publication date: August 16, 2018
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Riki OKAMOTO, Hiroyuki KAWATA, Masafumi AZUMA, Akihiro UENISHI, Naoki MARUYAMA
  • Publication number: 20180209006
    Abstract: A steel sheet according to an aspect of the present invention has predetermined chemical composition, in which a structure at a thickness ¼ portion includes, in terms of volume ratios, tempered martensite: 30% to 70% and one or both of ferrite and bainite: a total of 20% to 70%, in the structure at the thickness ¼ portion, a volume ratio of residual austenite is less than 10%, a volume ratio of fresh martensite is 10% or less, a volume ratio of pearlite is 10% or less, and a total volume ratio of the residual austenite, the fresh martensite, and the pearlite is 15% or less, a number density of iron-based carbides having a major axis of 5 nm or more in the tempered martensite at the thickness ¼ portion is 5×107 particles/mm2 or more, a ratio of the number of ?-type carbides in the number of the iron-based carbides having the major axis of 5 nm or more at the thickness ¼ portion is 20% or more, and a tensile strength is 780 MPa or higher.
    Type: Application
    Filed: July 13, 2015
    Publication date: July 26, 2018
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yuri TODA, Masafumi AZUMA, Akihiro UENISHI, Hiroyuki KAWATA, Naoki MARUYAMA, Genichi SHIGESATO
  • Publication number: 20180202019
    Abstract: A steel sheet according to an aspect of the present invention has predetermined chemical composition, in which a structure at a thickness ¼ portion includes, in terms of volume ratios, tempered martensite: 70% or more and one or both of ferrite and bainite: a total of less than 20%, in the structure at the thickness ¼ portion, a volume ratio of residual austenite is less than 10%, a volume ratio of fresh martensite is 10% or less, a volume ratio of pearlite is 10% or less, and a total volume ratio of the residual austenite, the fresh martensite, and the pearlite is 15% or less, a number density of iron-based carbides having a major axis of 5 nm or more in the tempered martensite at the thickness ¼ portion is 5×107 particles/mm2 or more, a ratio of the number of ?-type carbides in the number of the iron-based carbides having the major axis of 5 nm or more at the thickness ¼ portion is 20% or more, and a tensile strength is 780 MPa or higher.
    Type: Application
    Filed: July 13, 2015
    Publication date: July 19, 2018
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yuri TODA, Masafumi AZUMA, Akihiro UENISHI, Hiroyuki KAWATA, Naoki MARUYAMA, Genichi SHIGESATO
  • Patent number: 10000829
    Abstract: A hot-rolled steel sheet includes a specified chemical composition and includes a steel structure represented by an area ratio of ferrite being 5% to 50%, an area ratio of bainite composed of an aggregate of bainitic ferrite whose grain average misorientation is 0.4° to 3° being 50% to 90%, and a total area ratio of martensite, pearlite, and retained austenite being 5% or less.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: June 19, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yuri Toda, Masafumi Azuma, Akihiro Uenishi, Genichi Shigesato
  • Publication number: 20180105908
    Abstract: A base material (13) included in a plated steel sheet (1) includes a structure, at a ¼ sheet thickness position, represented by, in volume fraction: tempered martensite: 3.0% or more; ferrite: 4.0% or more; and retained austenite: 5.0% or more. An average hardness of the tempered martensite in the base material (13) is 5 GPa to 10 GPa, and a part or all of the tempered martensite and the retained austenite in the base material form an M-A. A volume fraction of ferrite in a decarburized ferrite layer (12) included in the plated steel sheet (1) is 120% or more of the volume fraction of the ferrite in the base material (13) at the ¼ sheet thickness position, an average grain diameter of the ferrite in the decarburized ferrite layer (12) is 20 ?m or less, a thickness of the decarburized ferrite layer (12) is 5 ?m to 200 ?m, a volume fraction of tempered martensite in the decarburized ferrite layer (12) is 1.
    Type: Application
    Filed: April 22, 2016
    Publication date: April 19, 2018
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Koutarou HAYASHI, Akihiro UENISHI, Masaharu KAMEDA, Jun HAGA, Kunio HAYASHI, Kohichi SANO, Hiroyuki KAWATA
  • Publication number: 20180023155
    Abstract: In a cold-rolled steel sheet having a predetermined chemical composition, a metallographic structure contains 40.0% or more and less than 60.0% of a polygonal ferrite, 30.0% or more of a bainitic ferrite, 10.0% to 25.0% of a residual austenite, and 15.0% or less of a martensite, by an area ratio, in the residual austenite, a proportion of the residual austenite in which an aspect ratio is 2.0 or less, a length of a long axis is 1.0 ?m or less, and a length of a short axis is 1.0 ?m or less, is 80.0% or more, in the bainitic ferrite, a proportion of the bainitic ferrite in which an aspect ratio is 1.7 or less and an average value of a crystal orientation difference in a region surrounded by a boundary in which a crystal orientation difference is 15° or more is 0.5° or more and less than 3.0°, is 80.0% or more, and a connection index D value of the martensite, the bainitic ferrite, and the residual austenite is 0.70 or less.
    Type: Application
    Filed: February 24, 2016
    Publication date: January 25, 2018
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kengo TAKEDA, Kunio HAYASHI, Akihiro UENISHI, Masafumi AZUMA, Takayuki NOZAKI, Yuri TODA
  • Patent number: 9874504
    Abstract: A bending fracture limit stress is calculated for each of (bend radius at sheet thickness center of a metal sheet)/(initial sheet thickness of the metal sheet); a fracture limit curve and a fracture limit stress are calculated from work hardening characteristics; a fracture limit curve corresponding to (the metal sheet bend radius at sheet thickness center)/(the initial sheet thickness of the metal sheet) is calculated; a corresponding fracture limit stress is calculated from stress of the element subject to determination and the fracture limit curve; a risk ratio that is a ratio between the stress of the element subject to determination and the fracture limit stress is computed; and performing fracture determination for the element subject to determination based on the risk ratio.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: January 23, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Shigeru Yonemura, Takuya Kuwayama, Akihiro Uenishi, Toshiyuki Niwa
  • Patent number: 9868145
    Abstract: A forming simulation method of an elastic-plastic material, which includes: calculating an element equivalent nodal force vector from stress tensor using a finite element method for one or a plurality of finite elements of a target configuration of the elastic-plastic material; and calculating the total equivalent nodal force vector of areas by integrating the element equivalent nodal force vector for the calculated one or more finite elements over all the areas or specified areas of the elastic-plastic material.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: January 16, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Noriyuki Suzuki, Takashi Ariga, Akihiro Uenishi, Shigeru Yonemura
  • Publication number: 20180013289
    Abstract: An electric power control system for controlling supply and consumption of electric power in a system power supply, a storage battery and an electric power load, said electric power control system including: an estimated value correction unit configured to obtain a difference between a past power control estimated value and a past actual performance value, and to shift a power control estimated value obtained as a result of estimation in a predetermined period to an extent corresponding to said difference, thereby correcting the power control estimated value, wherein said past power control estimated value is a value obtained as a result of estimation performed in a past time relative to said predetermined period, and said past actual performance value is a value obtained as an actual result in the past time; and a power control unit configured to control supply and consumption of electric power in the system power supply, the storage battery, and the electric power load, based on the power control estimated
    Type: Application
    Filed: December 1, 2015
    Publication date: January 11, 2018
    Inventors: Akihiro Uenishi, Junichi Matsuzaki, Takashi Umeoka, Yasuhiro Sugahara
  • Patent number: 9816904
    Abstract: An analyzing method of a spot welded portion, includes: acquiring bar elements as the spot welded portion; extracting other bar elements existing at a periphery of a target bar element which is targeted among the acquired bar elements; determining whether or not there is a bar element which shares the same end point with the target bar element among the extracted bar elements; determining that the target bar element and the bar element which shares the same end point with the target bar element are a three-layer spot welded portion when it is determined that there is the bar element which shares the same end point with the target bar element; and determining whether or not there is a bar element whose distance between elements with the target bar element is within a predetermined distance among the extracted bar elements when it is determined that there is not the bar element which shares the same end point with the target bar element, and determining that the target bar element and the extracted bar element
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: November 14, 2017
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Toshiyuki Niwa, Shunji Hiwatashi, Akihiro Uenishi, Satoshi Hirose, Yusuke Kamada, Akira Shirai
  • Publication number: 20170324244
    Abstract: A power demand estimation apparatus, comprising: an error measuring unit configured to measure an error of estimated power demand estimated with respect to one or more customer facilities; an error addition unit configured to obtain an added error obtained by adding errors measured with respect to segment periods in a unit term for correction, the unit term for correction including a predetermined number of consecutive series of segment periods; and a power demand estimation unit configured to estimate power demand values with respect to the respective segment periods, and correct the estimated power demand value estimated with respect to last predetermined number of segment period in the unit term for correction, based on an added error obtained with respect to the segment periods preceding the last predetermined number of segment period in the unit term for correction.
    Type: Application
    Filed: December 11, 2015
    Publication date: November 9, 2017
    Inventors: Akihiro Uenishi, Yasuhiro Sugahara, Junichi Matsuzaki, Takashi Umeoka