Patents by Inventor Akihisa Inoue

Akihisa Inoue has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9279186
    Abstract: A metallic material containing both a second constituent and a third constituent having positive and negative heats of mixing relative to a first constituent, respectively, and including a compound, an alloy or a nonequilibrium alloy having a melting point that is higher than the solidifying point of a metal bath made of the first constituent is placed in the metal bath. The metal bath is controlled to a temperature lower than a minimum value of a liquidus temperature within a range of compositional variations in which the amount of the third constituent in the metallic material decreases down to a point where the metallic material becomes substantially the second constituent so that the third constituent is selectively dissolved into the metal bath.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: March 8, 2016
    Assignee: TOHOKU UNIVERSITY
    Inventors: Hidemi Kato, Takeshi Wada, Kunio Yubuta, Akihisa Inoue
  • Patent number: 9210805
    Abstract: The zirconium content of the alloy composition of a copper alloy foil of the present invention is 3.0 to 7.0 atomic percent, and the copper alloy foil includes copper matrix phases and composite phases composed of copper-zirconium compound phases and copper phases. As shown in FIG. 1, the copper matrix phases and the composite phases form a matrix phase-composite phase layered structure and are arranged alternately parallel to a rolling direction as viewed in a cross-section perpendicular to the width direction. In addition, the copper-zirconium compound phases and the copper phases in the composite phases form a composite phase inner layered structure and are arranged alternately parallel to the rolling direction at a phase pitch of 50 nm or less as viewed in the above cross-section. This double layered structure presumably makes the copper alloy foil densely layered to provide a strengthening mechanism similar to multilayer reinforced composite materials.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: December 8, 2015
    Assignees: NGK Insulators, Ltd., Tohoku University
    Inventors: Naokuni Muramatsu, Hisamichi Kimura, Akihisa Inoue
  • Patent number: 9175406
    Abstract: There is provided a metallic glass component with its surface layer having both durability of a film and chromatic color properties, and a method for forming the surface layer. Surface active treatment is performed wherein the surface of the metallic glass component is reacted with a mixed aqueous solution of nitric acid and hydrofluoric acid to remove an oxide film and to provide an anchor bond shape on the surface of a metallic glass component, and electroplating or electroless plating is then performed, to form a plating film on the surface of the metallic glass component. It is thereby possible to form a surface layer of a metallic glass which has both durability and a chromatic color.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: November 3, 2015
    Assignees: TOKOKU UNIVERSITY, NGK INSULATORS, LTD.
    Inventors: Xin Min Wang, Naokuni Muramatsu, Junsuke Kiuchi, Hiroshi Suzuki, Tatsue Arakawa, Hisamichi Kimura, Akihisa Inoue, Eiichi Makabe
  • Patent number: 9165695
    Abstract: The zirconium content of the alloy composition of a copper alloy wire is 3.0 to 7.0 atomic percent; and the copper alloy wire includes copper matrix phases and composite phases composed of copper-zirconium compound phases and copper phases. The copper matrix phases and the composite phases form a matrix phase-composite phase fibrous structure and are arranged alternately parallel to an axial direction as viewed in a cross-section parallel to the axial direction and including a central axis. The copper-zirconium compound phases and the copper phases in the composite phases also form a composite phase inner fibrous structure and are arranged alternately parallel to the axial direction at a phase pitch of 50 nm or less as viewed in the above cross-section. This double fibrous structure presumably makes the copper alloy wire densely fibrous to provide a strengthening mechanism similar to the rule of mixture for fiber-reinforced composite materials.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: October 20, 2015
    Assignees: NGK Insulators, Ltd., Tohoku University
    Inventors: Naokuni Muramatsu, Hisamichi Kimura, Akihisa Inoue
  • Publication number: 20150225818
    Abstract: A copper alloy of the present invention contains 5.00 to 8.00 atomic percent of Zr and includes Cu and a Cu-Zr compound, and two phases of the Cu and the Cu-Zr compound form a mosaic-like structure which includes no eutectic phase and in which when viewed in cross section, crystals having a size of 10 ?m or less are dispersed. This copper alloy is formed by a manufacturing method including a sintering step of performing spark plasma sintering on a Cu-Zr binary system alloy powder at a temperature of 0.9 Tm° C. or less (Tm(° C.): melting point of the alloy powder) by supply of direct-currant pulse electricity, the Cu-Zr binary system alloy powder having an average grain diameter of 30 ?m or less and a hypoeutectic composition which contains 5.00 to 8.00 atomic percent of Zr. The Cu-Zr compound may include at least one of Cu5Zr, Cu9Zr2, and Cu8Zr3.
    Type: Application
    Filed: April 23, 2015
    Publication date: August 13, 2015
    Inventors: Takashi GOTO, Hisamichi KIMURA, Akihisa INOUE, Naokuni MURAMATSU
  • Patent number: 8968891
    Abstract: A magnetic recording medium 1 includes a substrate 11; and a metallic glassy layer 12 that is arranged on the substrate 11 and has a plurality of convex portions 12A and concave portions 12B. The metallic glassy layer 12 has a chemical composition represented by any one of the formulae (1) to (3): FemPtnSixByPz (wherein, 20<m?60 at %, 20<n?55 at %, 11?x<19 at %, 0?y<8 at %, and 0<z<8 at %)??(1); Fe55Pt25(SixByPz)20 (wherein, 11?x<19 at %, 0?y<8 at %, and0 <z<8 at %)??(2); and (Fe0.55Pt0.25Si0.16B0.02P0.02)100-xMx (wherein, 0<X?6 at %; and M represents an element or a combination of any two or more of the elements selected from Zr, Nb, Ta, Hf, Ti, Mo, W, V, Cr, Mn, Al, Y, Ag,and rare earth elements.)??(3).
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: March 3, 2015
    Assignee: Japan Science and Technology Agency
    Inventors: Akihiro Makino, Akihisa Inoue, Wei Zhang, Hisamichi Kimura
  • Publication number: 20140326424
    Abstract: The Present invention provides an arc melting furnace apparatus and a method of controlling arc discharge, in which a melt material having been melted can be stirred efficiently, avoiding labor intensive work. The furnace is provided with a mold 3 having a recess 3a and provided in a melting chamber 2, a non-consumable discharge electrode 5 for heating and melting a melt material accommodated in the recess 3a, a power source unit 10 for supplying electric power to the non-consumable discharge electrode 5, and a control device 11 which controls the power source unit to control output intensity of the arc discharge from the non-consumable discharge electrode. The control device 11 controls output current from the power source unit 10 and its current frequency to vary the output intensity of the arc discharge from the non-consumable discharge electrode 5 and stir a molten metal resulting from heating and melting the melt material.
    Type: Application
    Filed: August 9, 2012
    Publication date: November 6, 2014
    Applicants: TOHOKU TECHNO ARCH CO., LTD., DIAVAC LIMITED
    Inventors: Motohiro Kameyama, Yoshiaki Kawai, Yoshihiko Yokoyama, Akihisa Inoue
  • Patent number: 8865253
    Abstract: A method of coloring a surface of a zirconium-based metallic glass component that includes the step of imparting interference colors by carrying out an anodizing process using an alkaline solution to form a film having a thickness of 300 nm or less on the surface of the zirconium-based metallic glass component.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: October 21, 2014
    Assignees: NGK Insulators, Ltd., Tohoku University
    Inventors: Naokuni Muramatsu, Ken Suzuki, Akihisa Inoue, Hisamichi Kimura
  • Publication number: 20140205492
    Abstract: A copper alloy wire rod according to the present invention includes a copper parent phase and short fiber-shaped composite phases which are dispersed in the copper parent phase and which contain Cu8Zr3 and Cu, wherein the content of Zr is within the range of 0.2 atomic percent or more and 1.0 atomic percent or less. This copper alloy wire rod can be obtained by including the steps of melting a raw material in such a way that a copper alloy having a Zr content within the above-described range of is produced so as to obtain a molten metal in a melting step, casting the molten metal so as to obtain an ingot in a casting step, and subjecting the ingot to cold wire drawing in a wire drawing step, wherein the wire drawing step and a treatment after the wire drawing step are performed at lower than 500° C.
    Type: Application
    Filed: March 19, 2014
    Publication date: July 24, 2014
    Applicants: TOHOKU UNIVERSITY, NGK INSULATORS, LTD.
    Inventors: Akihisa INOUE, Hisamichi KIMURA, Naokuni MURAMATSU
  • Publication number: 20140190596
    Abstract: Disclosed is a beryllium-free copper alloy having high strength, high electric conductivity and good bending workability and a method of manufacturing the copper alloy. Provided is a copper alloy having a composition represented by the composition formula by atom %: Cu100-a-b-c(Zr, Hf)a(Cr, Ni, Mn, Ta)b(Ti, Al)c [wherein 2.5?a?4.0, 0.1<b?1.5 and 0?c?0.2; (Zr, Hf) means one or both of Zr and Hf; (Cr, Ni, Mn, Ta) means one or more of Cr, Ni, Mn and Ta; and (Ti, Al) means one or both of Ti and Al], and having Cu primary phases in which the mean secondary dendrite arm spacing is 2 ?m or less and eutectic matrices in which the lamellar spacing between a metastable Cu5(Zr, Hf) compound phase and a Cu phase is 0.2 ?m or less.
    Type: Application
    Filed: March 29, 2012
    Publication date: July 10, 2014
    Applicant: TOHOKU UNIVERSITY
    Inventors: Akihisa Inoue, Nobuyuki Nishiyama, Haruko Yamazaki
  • Patent number: 8663439
    Abstract: A sputtering target for producing a metallic glass membrane characterized in comprising a structure obtained by sintering atomized powder having a composition of a ternary compound system or greater with at least one or more metal elements selected from Pd, Zr, Fe, Co, Cu and Ni as its main component (component of greatest atomic %), and being an average grain size of 50 ?m or less. The prepared metallic glass membrane can be used as a substitute for conventional high-cost bulk metallic glass obtained by quenching of molten metal. This sputtering target for producing the metallic glass membrane is also free from problems such as defects in the metallic glass membrane and unevenness of composition, has a uniform structure, can be produced efficiently and at low cost, and does not generate many nodules or particles. Further provided is a method for manufacturing such a sputtering target for forming the metallic glass membrane.
    Type: Grant
    Filed: November 4, 2005
    Date of Patent: March 4, 2014
    Assignees: JX Nippon Mining & Metals Corporation, Tohoku University
    Inventors: Atsushi Nakamura, Masataka Yahagi, Akihisa Inoue, Hisamichi Kimura, Shin-ichi Yamaura
  • Patent number: 8652399
    Abstract: A sputtering target for producing a metallic glass membrane characterized in comprising a structure obtained by sintering atomized powder having a composition of a ternary compound system or greater with at least one or more metal elements selected from Pd, Zr, Fe, Co, Cu and Ni as its main component (component of greatest atomic %), and being an average grain size of 50 ?m or less. The prepared metallic glass membrane can be used as a substitute for conventional high-cost bulk metallic glass obtained by quenching of molten metal. This sputtering target for producing the metallic glass membrane is also free from problems such as defects in the metallic glass membrane and unevenness of composition, has a uniform structure, can be produced efficiently and at low cost, and does not generate many nodules or particles. Further provided is a method for manufacturing such a sputtering target for forming the metallic glass membrane.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: February 18, 2014
    Assignees: JX Nippon Mining & Metals Corporation, Tohoku University
    Inventors: Atsushi Nakamura, Masataka Yahagi, Akihisa Inoue, Hisamichi Kimura, Shin-ichi Yamaura
  • Patent number: 8651169
    Abstract: An arc melting furnace apparatus is provided which reduces an operation burden on a worker and shortens working hours. An arc melting furnace apparatus 1 includes a housing 2 having formed therein a melting chamber 2a, a hearth 4 provided within the melting chamber 2a and having a recessed portion 4a, and a heating mechanism 10 for heating and melting a metal material supplied into the recessed portion 4 to generate an alloy ingot. The apparatus comprises a turning member 23 rotatably supported on a supporting member 21 standing within the melting chamber 2a, a perimeter edge of the turning member 23 rotating and moving along the inner surface of the recessed portion 4a to lift the alloy ingot generated in the recessed portion 4a above the hearth 4 and turn it over, and a resilient turn-over assisting member 24 provided above an upper end of the recessed portion 4a.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: February 18, 2014
    Assignees: Diavac Limited, Tohoku Techno Arch Co., Ltd.
    Inventors: Masaki Nagata, Motohiro Kameyama, Yoshihiko Yokoyama, Akihisa Inoue
  • Patent number: 8470103
    Abstract: The present invention provides Cu-base amorphous alloys containing an amorphous phase of 90% or more by volume fraction. The amorphous phase has a composition represented by the formula: Cu100-a-b(Zr+Hf)aTib or Cu100-a-b-c-d(Zr+Hf?)aTibMcTd, wherein M is one or more elements selected from Fe, Cr, Mn, Ni, Co, Nb, Mo, W, Sn, Al, Ta and rare earth elements, T is one or more elements selected from the group consisting of Ag, Pd, Pt and Au, and a, b, c and d are atomic percentages falling within the following ranges: 5?a?55, 0?b?45, 30?a+b?60, 0.5?c?5, 0?d?10. The Cu-base amorphous alloy has a high glass-forming ability as well as excellent mechanical properties and formability, and can be formed as a rod or plate material with a diameter or thickness of 1 mm or more and an amorphous phase of 90% or more by volume fraction, through a metal mold casting process.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: June 25, 2013
    Assignee: Japan Science and Technology Agency
    Inventors: Akihisa Inoue, Wei Zhang, Tao Zhang
  • Publication number: 20130118645
    Abstract: The present invention provides a metallic glass having a chemical composition represented by any one of the following formulae (1) to (3): FemPtnSixByPz (wherein, 20<m?60 at %, 20<n?55 at %, 11?x<19 at %, 0?y<8 at %, and 0<z<8 at %)??(1); Fe55Pt25(SixByPz)20 (wherein, 11?x<19 at %, 0?y<8 at %, and 0<z<8 at %)??(2); and (Fe0.55Pt0.25Si0.16B0.02P0.02)100-xMx (wherein, 0<X?6 at %; and M represents an element or a combination of any two or more of the elements selected from Zr, Nb, Ta, Hf, Ti, Mo, W, V, Cr, Mn, Al, Y, Ag, and rare earth elements.)??(3). The present invention provides a magnetic recording medium 1 comprising: a substrate 11; and a metallic glassy layer 12 that is arranged on the substrate 11 and has a plurality of convex portions 12A and concave portions 12B. The metallic glassy layer 12 has a chemical composition represented by any one of the above formulae (1) to (3).
    Type: Application
    Filed: December 27, 2012
    Publication date: May 16, 2013
    Applicant: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Akihiro MAKINO, Akihisa INOUE, Wei ZHANG, Hisamichi KIMURA
  • Patent number: 8430978
    Abstract: A sintered sputtering target having a structure where the average crystallize size is 1 nm to 50 nm and preferably comprises an alloy having a three-component system or greater containing, as its primary component, at least one element selected from among Zr, Pd, Cu, Co, Fe, Ti, Mg, Sr, Y, Nb, Mo, Tc, Ru, Rh, Ag, Cd, In, Sn, Sb, Te and a rare earth metal. This target is manufactured by sintering atomized powder. Thereby provided is a high density target having an extremely fine and uniform structure manufactured with the sintering method, in place of a conventional bulk metal glass produced by the quenching of a molten metal, which has a coarse crystal structure and requires a high cost for its production.
    Type: Grant
    Filed: July 14, 2004
    Date of Patent: April 30, 2013
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Akihisa Inoue, Hisamichi Kimura, Kenichiro Sasamori, Masataka Yahagi, Atsushi Nakamura, Hideyuki Takahashi
  • Patent number: 8418366
    Abstract: An internal gear manufacturing method capable of manufacturing time reduction and easy core removal, and a metallic glass internal gear manufactured thereby. A carbon core formed into a shape of an external gear is arranged in a thin, long tubular mold of a length equal thereto with a space extending longitudinally therealong. A molten metal material is pressure-injected under a temperature higher than a melting point thereof into the space between the mold and the core. The molten metal material is resolidified by rapid cooling at or above a critical cooling rate thereof together with the mold and the core. After resolidification of the molten metal material, the core is removed by pulverization or dissolution. Along internal gear formed of the resolidified metal material is cut into a plurality of segments of a prescribed length.
    Type: Grant
    Filed: November 27, 2008
    Date of Patent: April 16, 2013
    Assignee: Namiki Seimitsu Houseki Kabushiki Kaisha
    Inventors: Xinmin Wang, Akihisa Inoue, Yukiharu Shimizu
  • Publication number: 20130068417
    Abstract: An arc melting furnace apparatus is provided which reduces an operation burden on a worker and shortens working hours. An arc melting furnace apparatus 1 includes a housing 2 having formed therein a melting chamber 2a, a hearth 4 provided within the melting chamber 2a and having a recessed portion 4a, and a heating mechanism 10 for heating and melting a metal material supplied into the recessed portion 4 to generate an alloy ingot. The apparatus comprises a turning member 23 rotatably supported on a supporting member 21 standing within the melting chamber 2a, a perimeter edge of the turning member 23 rotating and moving along the inner surface of the recessed portion 4a to lift the alloy ingot generated in the recessed portion 4a above the hearth 4 and turn it over, and a resilient turn-over assisting member 24 provided above an upper end of the recessed portion 4a.
    Type: Application
    Filed: June 1, 2011
    Publication date: March 21, 2013
    Inventors: Masaki Nagata, Motohiro Kameyama, Yoshihiko Yokoyama, Akihisa Inoue
  • Patent number: 8377580
    Abstract: A magnetic recording medium 1 includes a substrate 11; and a metallic glassy layer 12 that is arranged on the substrate 11 and has a plurality of convex portions 12A and concave portions 12B. The metallic glassy layer 12 has a chemical composition represented by any one of the formulae (1) to (3): FemPtnSixByPz (wherein, 20<m?60 at %, 20<n?55 at %, 11?x<19 at %, 0?y<8 at %, and 0<z<8 at %) (1); Fe55Pt25(SixByPz)20 (wherein, 11?x<19 at %, 0?y<8 at %, and 0<z<8 at %) (2); and (Fe0.55Pt0.25Si0.16B0.02P0.02)100-xMx (wherein 0<X?6 at %; and M represents an element or a combination of an two or more of the elements selected from Zr, Nb, Ta, Hf, Ti, Mo, W, V, Cr, Mn, Al, Y, Ag, and rare earth elements.) (3).
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: February 19, 2013
    Assignee: Japan Science and Technology Agency
    Inventors: Akihiro Makino, Akihisa Inoue, Wei Zhang, Hisamichi Kimura
  • Publication number: 20120295129
    Abstract: A metallic material containing both a second constituent and a third constituent having positive and negative heats of mixing relative to a first constituent, respectively, and including a compound, an alloy or a nonequilibrium alloy having a melting point that is higher than the solidifying point of a metal bath made of the first constituent is placed in the metal bath. The metal bath is controlled to a temperature lower than a minimum value of a liquidus temperature within a range of compositional variations in which the amount of the third constituent in the metallic material decreases down to a point where the metallic material becomes substantially the second constituent so that the third constituent is selectively dissolved into the metal bath.
    Type: Application
    Filed: October 22, 2010
    Publication date: November 22, 2012
    Applicant: TOHOKU UNIVERSITY
    Inventors: Hidemi Kato, Takeshi Wada, Kunio Yubuta, Akihisa Inoue