Patents by Inventor Akihito Orii

Akihito Orii has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10113746
    Abstract: An atomizer includes a mixing chamber for mixing spray fuel and spray medium, a spray fluid flow passage for supplying the spray fluid into the mixing chamber, a spray medium flow passage for supplying the spray medium into the mixing chamber, and an outlet hole for spraying a mixed fluid of the spray fluid and the spray medium which have been mixed in the mixing chamber to the outside. The spray medium flow passage includes a first spray medium supply hole for supplying the spray medium into the mixing chamber, and a second spray medium supply hole for supplying the spray medium into a region more downstream than the first spray medium supply hole in the mixing chamber, and the second spray medium supply hole supplies the spray medium to a region around the outlet hole.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: October 30, 2018
    Assignee: Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: Hirofumi Okazaki, Akihito Orii
  • Patent number: 9970356
    Abstract: An atomizer of the invention includes a mixing chamber, spray fluid flow passages supplying a spray fluid to the mixing chamber, a spray medium flow passage supplying a spray medium to the mixing chamber, outlet holes spraying a fluid mixture of the spray fluid and the spray medium, and fluid mixture flow passages connecting the mixing chamber and the outlet holes to each other. The fluid mixture flowing through each of the fluid mixture flow passages joins with each other at a joining section and is sprayed from the outlet hole. The mixing chamber includes a middle ejection hole spraying the spray fluid to the mixing chamber. The middle ejection hole is arranged at a joining section of the spray fluid flow passages. The spray fluid flowing through the spray fluid flow passages joins with each other at the joining section and is sprayed from the middle ejection hole.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: May 15, 2018
    Assignee: Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: Hirofumi Okazaki, Akihito Orii
  • Publication number: 20160377290
    Abstract: A gas turbine combustor has a burner with an inner casing and an outer casing, and an airflow path that supplies air between them. An opening introduces air from an outer circumferential side to an inner circumferential side of the inner casing of the combustor and an obstacle impedes the flow of the air upstream of the opening portion. The obstacle is formed by a perforated plate having an opening ratio representing a ratio of cross-sectional area of an opening portion of the holes formed in the obstacle to the sum of the cross-sectional area of the opening portion of the holes, and the cross-sectional area of the shielding portion that shields the flow of the air is low on an inner circumferential side of the obstacle and high on an outer circumferential side of the obstacle.
    Type: Application
    Filed: June 21, 2016
    Publication date: December 29, 2016
    Inventors: Hirofumi OKAZAKI, Akihito ORII, Tomoki URUNO
  • Patent number: 9494313
    Abstract: Provided are a device and a method for manufacturing a semi-carbonized fuel of a biomass that does not require an external heat source and is capable of suppressing adhesion of tar, condensed water, or the like to a pipe. The device includes a drying device for heating and drying a biomass, a pyrolysis device for decomposing the dried biomass, and a combustion device for supplying heat to the drying device and the pyrolysis device. The pyrolysis device is supplied with a part of a combustion exhaust gas generated in the combustion device, directly mixes the supplied combustion exhaust gas and the biomass to heat and pyrolytically decompose the biomass, and supplies a mixed gas of a generated pyrolysis gas and the combustion exhaust gas to the combustion device. The combustion device is supplied with an air for combustion, combust the supplied mixed gas, and generate the combustion exhaust gas.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: November 15, 2016
    Assignee: Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: Hirofumi Okazaki, Akihito Orii, Tetsuma Tatsumi
  • Publication number: 20160230999
    Abstract: An atomizer includes a mixing chamber for mixing spray fuel and spray medium, a spray fluid flow passage for supplying the spray fluid into the mixing chamber, a spray medium flow passage for supplying the spray medium into the mixing chamber, and an outlet hole for spraying a mixed fluid of the spray fluid and the spray medium which have been mixed in the mixing chamber to the outside. The spray medium flow passage includes a first spray medium supply hole for supplying the spray medium into the mixing chamber, and a second spray medium supply hole for supplying the spray medium into a region more downstream than the first spray medium supply hole in the mixing chamber, and the second spray medium supply hole supplies the spray medium to a region around the outlet hole.
    Type: Application
    Filed: February 4, 2016
    Publication date: August 11, 2016
    Inventors: Hirofumi OKAZAKI, Akihito ORII
  • Publication number: 20150361895
    Abstract: An atomizer of the invention includes a mixing chamber, spray fluid flow passages supplying a spray fluid to the mixing chamber, a spray medium flow passage supplying a spray medium to the mixing chamber, outlet holes spraying a fluid mixture of the spray fluid and the spray medium, and fluid mixture flow passages connecting the mixing chamber and the outlet holes to each other. The fluid mixture flowing through each of the fluid mixture flow passages joins with each other at a joining section and is sprayed from the outlet hole. The mixing chamber includes a middle ejection hole spraying the spray fluid to the mixing chamber. The middle ejection hole is arranged at a joining section of the spray fluid flow passages. The spray fluid flowing through the spray fluid flow passages joins with each other at the joining section and is sprayed from the middle ejection hole.
    Type: Application
    Filed: June 11, 2015
    Publication date: December 17, 2015
    Inventors: Hirofumi OKAZAKI, Akihito ORII
  • Patent number: 8961170
    Abstract: A pulverized coal thermal power generation system that significantly reduces the amount of NOx emissions from a boiler and does not require a denitration unit is provided. When a denitration unit is not used, performance to remove mercury from a boiler waste gas is reduced. A waste gas purification system for a pulverized coal boiler, that compensates for this is provided. A pulverized coal boiler having a furnace for burning pulverized coal, burners for supplying pulverized coal and air used for combustion into the furnace so as to burn the pulverized coal in an insufficient air state and after-air ports provided on the downstream side of the burners for supplying air used for perfect combustion characterized in that, an air ratio in the furnace is 1.05 to 1.14, and the residence time of a combustion gas from the burner disposed on the uppermost stage to a main after-air port is 1.1 to 3.3 seconds.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: February 24, 2015
    Assignee: Babcock-Hitachi K.K.
    Inventors: Hisayuki Orita, Masayuki Taniguchi, Akihito Orii, Yuki Kamikawa, Hirofumi Okazaki
  • Patent number: 8714096
    Abstract: A pulverized coal boiler of the present invention is structured so as to form, among upper and lower after-air nozzles, an opening serving as an outlet of the lower after-air nozzle positioned on the upstream side is formed in a rectangular shape, a cylindrical section for defining a minimum flow path area of combustion air flowing through a flow path of the after-air nozzle is installed inside of the lower after-air nozzles along the flow path of the lower after-air nozzle, and a swirl blade for giving a swirl force to the combustion air flowing through the flow path of the after-air nozzles is installed inside of the cylindrical section, and the flow path of the lower after-air nozzles is formed so that a flow path area of the flow path of the after-air nozzles through which the combustion air flows from a position where the cylindrical section is installed toward the opening of each of the lower after-air nozzles is expanded.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: May 6, 2014
    Assignee: Babcock-Hitachi K.K.
    Inventors: Akihito Orii, Hirofumi Okazaki, Yusuke Ochi
  • Publication number: 20140026791
    Abstract: Provided are a device and a method for manufacturing a semi-carbonized fuel of a biomass that does not require an external heat source and is capable of suppressing adhesion of tar, condensed water, or the like to a pipe. The device includes a drying device for heating and drying a biomass, a pyrolysis device for decomposing the dried biomass, and a combustion device for supplying heat to the drying device and the pyrolysis device. The pyrolysis device is supplied with a part of a combustion exhaust gas generated in the combustion device, directly mixes the supplied combustion exhaust gas and the biomass to heat and pyrolytically decompose the biomass, and supplies a mixed gas of a generated pyrolysis gas and the combustion exhaust gas to the combustion device. The combustion device is supplied with an air for combustion, combust the supplied mixed gas, and generate the combustion exhaust gas.
    Type: Application
    Filed: April 6, 2012
    Publication date: January 30, 2014
    Applicant: HITACHI LTD
    Inventors: Hirofumi Okazaki, Akihito Orii, Tetsuma Tatsumi
  • Publication number: 20130319301
    Abstract: A spray nozzle is provided with upper and lower channels and from respective surfaces, the two channels form a cross shape, and become a fuel spray hole by communication of an intersecting part. A guide member is provided, in contact with the upstream-side channel, in a position overlapped with the intersecting part with respect to the spray direction of the spray nozzle. Spray fluid is branched with the guide member from the fuel fluid duct connected to the spray nozzle, passes through the upstream-side channel, to the intersecting part, and is sprayed. The spray fluid forms opposed flows toward the intersecting part in the upstream-side channel to collide with each other at an obtuse angle of 90° or greater, then is sprayed from the intersecting part, to form a thin fan-shaped liquid film. The liquid film is divided by a shearing force from the peripheral gas, atomized into spray particles.
    Type: Application
    Filed: January 12, 2012
    Publication date: December 5, 2013
    Applicant: Babcock-Hitachi K.K.
    Inventors: Hirofumi Okazaki, Koji Kuramashi, Hideo Okimoto, Akihito Orii, Kenichi Ochi
  • Publication number: 20130255547
    Abstract: A pulverized coal-fired boiler efficiently supplies air to a central part of a furnace and the neighborhood of a furnace wall, thereby promoting mixture with combustion gas, and reducing both NOx and CO. The main after air ports are structured so as to jet air having a large momentum for enabling arrival at the central part of the furnace, and the sub-after air ports are structured so as to jet air having a small momentum to the neighborhood of the wall face of the furnace, and a sectional center of each of the sub-after air ports is within a range from 1 to 5 times of a caliber of the main after air ports from a sectional center of each of the main after air ports.
    Type: Application
    Filed: May 31, 2013
    Publication date: October 3, 2013
    Applicant: BABCOCK-HITACHI K.K
    Inventors: Yuki KAMIKAWA, Masayuki TANIGUCHI, Hisayuki ORITA, Hironobu KOBAYASHI, Akira BABA, Toshihiko MINE, Shinichirou NOMURA, Noriyuki OOYATSU, Satoshi TADAKUMA, Hidehisa YOSHIZAKO, Hiroaki KANEMOTO, Kouji KURAMASHI, Akihito ORII, Shinji TSUDA, Hirofumi OKAZAKI, Takanori YANO, Katsumi SHIMOHIRA
  • Patent number: 8505472
    Abstract: A pulverized coal-fired boiler efficiently supplies air to a central part of a furnace and the neighborhood of a furnace wall, thereby promoting mixture with combustion gas, and reducing both NOx and CO. The main after air ports are structured so as to jet air having a large momentum for enabling arrival at the central part of the furnace, and the sub-after air ports are structured so as to jet air having a small momentum to the neighborhood of the wall face of the furnace, and a sectional center of each of the sub-after air ports is within a range from 1 to 5 times of a caliber of the main after air ports from a sectional center of each of the main after air ports.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: August 13, 2013
    Assignee: Babcock-Hitachi K.K.
    Inventors: Yuki Kamikawa, Masayuki Taniguchi, Hisayuki Orita, Hironobu Kobayashi, Akira Baba, Toshihiko Mine, Shinichirou Nomura, Noriyuki Ooyatsu, Satoshi Tadakuma, Hidehisa Yoshizako, Hiroaki Kanemoto, Kouji Kuramashi, Akihito Orii, Shinji Tsuda, Hirofumi Okazaki, Takanori Yano, Katsumi Shimohira
  • Publication number: 20120137938
    Abstract: A pulverized coal boiler of the present invention is structured so as to form, among upper and lower after-air nozzles, an opening serving as an outlet of the lower after-air nozzle positioned on the upstream side is formed in a rectangular shape, a cylindrical section for defining a minimum flow path area of combustion air flowing through a flow path of the after-air nozzle is installed inside of the lower after-air nozzles along the flow path of the lower after-air nozzle, and a swirl blade for giving a swirl force to the combustion air flowing through the flow path of the after-air nozzles is installed inside of the cylindrical section, and the flow path of the lower after-air nozzles is formed so that a flow path area of the flow path of the after-air nozzles through which the combustion air flows from a position where the cylindrical section is installed toward the opening of each of the lower after-air nozzles is expanded.
    Type: Application
    Filed: August 3, 2010
    Publication date: June 7, 2012
    Inventors: Akihito Orii, Hirofumi Okazaki, Yusuke Ochi
  • Patent number: 7878130
    Abstract: A overfiring air port of the present invention is to supply an incomplete combustion region with air making up for combustion-shortage, in a furnace in which the incomplete combustion region less than stoichiometric ratio is formed by a burner. Furthermore, the airport is characterized by comprising: a nozzle mechanism for injecting air including an axial velocity component of an air flow and a radial velocity component directed to a center line of the airport; and a control mechanism for controlling a ratio of these velocity components.
    Type: Grant
    Filed: November 3, 2005
    Date of Patent: February 1, 2011
    Assignee: Babcock-Hitachi K.K.
    Inventors: Kenji Yamamoto, Hirofumi Okazaki, Masayuki Taniguchi, Kazumi Yasuda, Kenji Kiyama, Takanori Yano, Akira Baba, Kenichi Ochi, Hisayuki Orita, Akihito Orii, Yuki Kamikawa, Kouji Kuramashi
  • Publication number: 20100224108
    Abstract: A pulverized coal-fired boiler efficiently supplies air to a central part of a furnace and the neighborhood of a furnace wall, thereby promoting mixture with combustion gas, and reducing both NOx and CO. The main after air ports are structured so as to jet air having a large momentum for enabling arrival at the central part of the furnace, and the sub-after air ports are structured so as to jet air having a small momentum to the neighborhood of the wall face of the furnace, and a sectional center of each of the sub-after air ports is within a range from 1 to 5 times of a caliber of the main after air ports from a sectional center of each of the main after air ports.
    Type: Application
    Filed: January 10, 2007
    Publication date: September 9, 2010
    Inventors: Yuki Kamikawa, Masayuki Taniguchi, Hisayuki Orita, Hironobu Kobayashi, Akira Baba, Toshihiko Mine, Shinichirou Nomura, Noriyuki Ooyatsu, Satoshi Tadakuma, Hidehisa Yoshizako, Hiroaki Kanemoto, Kouji Kuramashi, Akihito Orii, Shinji Tsuda, Hirofumi Okazaki, Takanori Yano, Katsumi Shimohira
  • Publication number: 20100223926
    Abstract: A pulverized coal thermal power generation system that significantly reduces the amount of NOx emissions from a boiler and does not require a denitration unit is provided. When a denitration unit is not used, performance to remove mercury from a boiler waste gas is reduced. A waste gas purification system for a pulverized coal boiler, that compensates for this is provided. A pulverized coal boiler having a furnace for burning pulverized coal, burners for supplying pulverized coal and air used for combustion into the furnace so as to burn the pulverized coal in an insufficient air state and after-air ports provided on the downstream side of the burners for supplying air used for perfect combustion characterized in that, an air ratio in the furnace is 1.05 to 1.14, and the residence time of a combustion gas from the burner disposed on the uppermost stage to a main after-air port is 1.1 to 3.3 seconds.
    Type: Application
    Filed: May 14, 2008
    Publication date: September 9, 2010
    Applicant: Babcock-Hitachi K.K.
    Inventors: Hisayuki Orita, Masayuki Taniguchi, Akihito Orii, Yuki Kamikawa, Hirofumi Okazaki
  • Publication number: 20100031858
    Abstract: The present invention provides a highly reliable pulverized coal boiler that ensures suppression of a rise in flame temperature caused during the combustion of an unburnt gas in a furnace when combustion air is supplied from after-air ports so as to reduce the concentration of thermal NOx generated during the combustion.
    Type: Application
    Filed: November 6, 2007
    Publication date: February 11, 2010
    Inventors: Akihito Orii, Masayuki Taniguchi, Yuki Kamikawa, Hironobu Kobayashi, Miki Shimogouri, Toshihiko Mine, Shinichiro Nomura, Akira Baba, Yusuke Ochi, Koji Kuramashi
  • Patent number: 7215729
    Abstract: A resistance member (e.g., fuel holding portion of the lower tie plate) is provided at the lower end of the fuel assembly. Provision is made of a coolant ascending path in which said water rods have coolant inlet ports that are open in a region lower than the resistance member to upwardly guide the coolant, and a coolant descending path which has a coolant delivery port that is open in a region higher than the resistance member to downwardly guide the coolant. The coolant ascending path and the coolant descending path are communicated with each other at their upper end portions.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: May 8, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Osamu Yokomizo, Yuichiro Yoshimoto, Yoshiyuki Kataoka, Shinichi Kashiwai, Yasuhiro Masuhara, Akio Tomiyama, Akihito Orii, Kotaro Inoue, Takaaki Mochida, Tatsuo Hayashi
  • Publication number: 20060115779
    Abstract: A overfiring air port of the present invention is to supply an incomplete combustion region with air making up for combustion-shortage, in a furnace in which the incomplete combustion region less than stoichiometric ratio is formed by a burner. Furthermore, the airport is characterized by comprising: a nozzle mechanism for injecting air including an axial velocity component of an air flow and a radial velocity component directed to a center line of the airport; and a control mechanism for controlling a ratio of these velocity components.
    Type: Application
    Filed: November 3, 2005
    Publication date: June 1, 2006
    Applicant: BABCOCK-HITACHI K.K.
    Inventors: Kenji Yamamoto, Hirofumi Okazaki, Masayuki Taniguchi, Kazumi Yasuda, Kenji Kiyama, Takanori Yano, Akira Baba, Kenichi Ochi, Hisayuki Orita, Akihito Orii, Yuki Kamikawa, Kouji Kuramashi
  • Patent number: 6735267
    Abstract: A fuel assembly in accordance with the present invention comprises a plurality of first fuel rods and a plurality of second fuel rods having a length shorter than a length of the first fuel rod, and these two kinds of fuel rods are arranged in a fuel rod array of 10 rows by 10 columns. Two water rods are arranged in regions capable of arranging 8 fuel rods. The second fuel rods are not arranged in the outermost tier of the fuel rod array. Which satisfies the following conditions, that is, B≧60  (Equation 1) 15≦n≦20(n: integer)  (Equation 2) Awr/Ach≦0.149  (Equation 3) Lp/Lf≧11/24  (Equation 4) Awr/Ach≧(3.00×10−4×n2+6.00×10−4×n−1.2×10−2)×(Lp/Lf−1)+1.75×10−1  (Equation 5) Awr/Ach≦(8.63×10−4×n2−6.09×10−2×n+1.33×10−1)×(Lp/Lf−8.
    Type: Grant
    Filed: August 26, 2002
    Date of Patent: May 11, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Akihito Orii, Junichi Koyama, Koji Nishida, Masao Chaki, Toru Kanazawa