Patents by Inventor Akimitsu Oishi

Akimitsu Oishi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8859434
    Abstract: The present invention relates to an etching method of capable of etching a silicon carbide substrate with a higher accuracy. A first etching step in which a silicon carbide substrate K is heated to a temperature equal to or higher than 200 ° C, SF6 gas is supplied into a processing chamber and plasma is generated from the SF6 gas, and a bias potential is applied to a platen, thereby isotropically etching the silicon carbide substrate K, and a second etching step in which the silicon carbide substrate K is heated to a temperature equal to or higher than 200 ° C., SF6 gas and O2 gas are supplied into the processing chamber and plasma is generated from the SF6 gas and the O2 gas, and a bias potential is applied to the platen on which the silicon carbide substrate K is placed, thereby etching the silicon carbide substrate K while forming a silicon oxide film as passivation film on the silicon carbide substrate K are alternately repeated.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: October 14, 2014
    Assignee: SPP Technologies Co., Ltd.
    Inventors: Akimitsu Oishi, Shoichi Murakami
  • Patent number: 8673781
    Abstract: The present invention relates to a plasma etching method with which a wide-gap semiconductor substrate can be etched with high accuracy. An inert gas is supplied into a processing chamber and plasma is generated from the inert gas, a bias potential is applied to a platen on which a wide-gap semiconductor substrate is placed, thereby making ions generated by the generation of plasma from the inert gas incident on the semiconductor substrate on the platen to thereby heat the semiconductor substrate. After the temperature of the semiconductor substrate reaches an etching temperature between 200° C. and 400° C., an etching gas is supplied into the processing chamber and plasma is generated from the etching gas and a bias potential is applied to the platen, thereby etching the semiconductor substrate while maintaining the temperature of the semiconductor substrate at the etching temperature.
    Type: Grant
    Filed: September 6, 2010
    Date of Patent: March 18, 2014
    Assignee: Sumitomo Precision Products Co., Ltd.
    Inventors: Akimitsu Oishi, Shoichi Murakami, Masayasu Hatashita
  • Patent number: 8598049
    Abstract: A deposition method capable of forming an oxide film with a predetermined film thickness ratio using a deposition gas with which a small film thickness ratio is obtained and a deposition gas with which a large film thickness ratio is obtained. When forming an oxide film having a larger film thickness on the surface of a substrate than on the bottom surface of the hole so that the film thickness ratio of the oxide film formed on the surface of the substrate to the oxide film formed on the bottom surface of the hole becomes a predetermined ratio, plasma is generated from a gas mixture including tetraethoxysilane and oxygen to form an oxide film and then plasma is generated from a gas mixture including silane and nitrous oxide.
    Type: Grant
    Filed: November 25, 2010
    Date of Patent: December 3, 2013
    Assignee: SecureView LLC
    Inventors: Masayasu Hatashita, Akimitsu Oishi, Shoichi Murakami
  • Publication number: 20130115772
    Abstract: The present invention relates to an etching method of capable of etching a silicon carbide substrate with a higher accuracy. A first etching step in which a silicon carbide substrate K is heated to a temperature equal to or higher than 200° C., SF6 gas is supplied into a processing chamber and plasma is generated from the SF6 gas, and a bias potential is applied to a platen, thereby isotropically etching the silicon carbide substrate K, and a second etching step in which the silicon carbide substrate K is heated to a temperature equal to or higher than 200° C., SF6 gas and O2 gas are supplied into the processing chamber and plasma is generated from the SF6 gas and the O2 gas, and a bias potential is applied to the platen on which the silicon carbide substrate K is placed, thereby etching the silicon carbide substrate K while forming a silicon oxide film as passivation film on the silicon carbide substrate K are alternately repeated.
    Type: Application
    Filed: July 11, 2011
    Publication date: May 9, 2013
    Applicant: SPP Technologies Co., Ltd.
    Inventors: Akimitsu Oishi, Shoichi Murakami
  • Publication number: 20120258604
    Abstract: A deposition method capable of forming an oxide film with a predetermined film thickness ratio using a deposition gas with which a small film thickness ratio is obtained and a deposition gas with which a large film thickness ratio is obtained. When forming an oxide film having a larger film thickness on the surface of a substrate than on the bottom surface of the hole so that the film thickness ratio of the oxide film formed on the surface of the substrate to the oxide film formed on the bottom surface of the hole becomes a predetermined ratio, plasma is generated from a gas mixture including tetraethoxysilane and oxygen to form an oxide film and then plasma is generated from a gas mixture including silane and nitrous oxide.
    Type: Application
    Filed: November 25, 2010
    Publication date: October 11, 2012
    Applicant: SPP TECHNOLOGIES CO., LTD.
    Inventors: Masayasu Hatashita, Akimitsu Oishi, Shoichi Murakami
  • Publication number: 20120052688
    Abstract: The present invention relates to a plasma etching method with which a wide-gap semiconductor substrate can be etched with high accuracy. An inert gas is supplied into a processing chamber and plasma is generated from the inert gas, a bias potential is applied to a platen on which a wide-gap semiconductor substrate is placed, thereby making ions generated by the generation of plasma from the inert gas incident on the semiconductor substrate on the platen to thereby heat the semiconductor substrate. After the temperature of the semiconductor substrate reaches an etching temperature between 200° C. and 400° C., an etching gas is supplied into the processing chamber and plasma is generated from the etching gas and a bias potential is applied to the platen, thereby etching the semiconductor substrate while maintaining the temperature of the semiconductor substrate at the etching temperature.
    Type: Application
    Filed: September 6, 2010
    Publication date: March 1, 2012
    Applicant: SUMITOMO PRECISION PRODUCTS CO., LTD.
    Inventors: Akimitsu Oishi, Shoichi Murakami, Masayasu Hatashita
  • Publication number: 20090275202
    Abstract: Provided are a silicon structure having an opening which has a high aspect ratio and an etching mask for forming the silicon structure. A step of performing hole etching or trench etching of silicon so as to substantially expose a portion of at least a bottom surface of etched silicon and a step of forming a silicon oxide film by a CVD method on the silicon structure formed by the step of performing the hole etching or the trench etching are conducted. Thereafter, a step of exposing the formed silicon oxide film to a gas containing a hydrogen fluoride vapor is conducted. Further, the above-mentioned step of performing the hole etching or the trench etching is conducted again.
    Type: Application
    Filed: September 19, 2007
    Publication date: November 5, 2009
    Inventors: Masahiko Tanaka, Akimitsu Oishi