Patents by Inventor Akira Yamakawa

Akira Yamakawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5356842
    Abstract: This invention provides composite ceramic powder comprising matrix ceramic powder and fine particles of ceramic, metal or metal compound which are different from the matrix ceramic powder and dispersed in the matrix ceramic powder. The composite ceramic powder is produced by mixing matrix ceramic powder or its precursor with fine particles to be dispersed therein and then heating the resulting mixture. The composite ceramic powder is also produced by dispersing matrix ceramic particles or precursor thereof in an organic solvent with an organic compound as a dispersoid particle precursor and separating and recovering the organic solvent. The composite ceramic powder is suitable for producing sintered bodies having excellent properties, especially with respect to thermal conductivity, flexural strength and light transmittance, by a conventional ceramic fabrication process.
    Type: Grant
    Filed: March 19, 1993
    Date of Patent: October 18, 1994
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Akira Yamakawa, Koichi Sogabe
  • Patent number: 5352641
    Abstract: A composite silicon nitride sintered body formed of silicon nitride as a matrix and silicon carbide having particle sizes of 5 to 500 nm as a phase dispersed in the sintered body, wherein the total amount of dispersed silicon carbide is 1 to 40% by volume based on the sintered body, the proportion by volume of the silicon carbide dispersed in the silicon nitride particles is 5 to 99% based on the total amount dispersed, the remainder being present only in the grain boundary of the silicon nitride, and a process for producing a silicon nitride composite sintered body which includes the steps of adding a sintering aid to amorphous composite powders as starting materials consisting of silicon, nitrogen and carbon to form a green compact; firing the green compact in a nitrogen atmosphere at 1350.degree. to 1650.degree. C. as the primary sintering; firing the same at 1600.degree. to 1900.degree. C. as the secondary sintering; and firing the same at 1800.degree. to 2200.degree. C.
    Type: Grant
    Filed: December 14, 1992
    Date of Patent: October 4, 1994
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Jin-Joo Matsui, Akira Yamakawa
  • Patent number: 5346869
    Abstract: Described are sintered silicon nitride bodies useful as materials for parts required to have strength, especially excellent impact strength for items such as automobile parts and machine parts. The sintered Si.sub.3 N.sub.4 bodies contain 80-98 wt. % of silicon nitride and have a porosity not higher than 3% and an shock compressive elasticity limit of at least 15 GPa.
    Type: Grant
    Filed: December 29, 1993
    Date of Patent: September 13, 1994
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takao Nishioka, Takehisa Yamamoto, Kenji Matsunuma, Akira Yamakawa, Masaya Miyake
  • Patent number: 5343150
    Abstract: Disclosed herein is a measuring apparatus and a measuring method which can measure a physical property value such as an oxygen content or thermal conductivity of a sample material such as an aluminum nitride sintered body with high accuracy, over the entire material in a short time. A microwave oscillation source generates microwaves. A sample material to be evaluated, such as an aluminum nitride sintered body, is placed in a cavity resonator, irradiated with microwaves (M), and subjected to a magnetic field (H) applied by electromagnets. An amount of microwaves absorbed by the object is measured by a microwave absorption measuring unit. This amount of microwave absorption is obtained from an electron spin resonance spectrum. The concentration of unpaired electrons in the object is obtained from the measured amount of microwave absorption on the basis of a known relation between an amount of microwave absorption and concentration of unpaired electrons.
    Type: Grant
    Filed: July 26, 1993
    Date of Patent: August 30, 1994
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Seiji Nakahata, Kouichi Sogabe, Akira Yamakawa
  • Patent number: 5312786
    Abstract: An aluminum nitride sintered body characterized by comprising aluminum nitride as the main component, containing a titanium compound, and having a black color, a transmittance of 10% or less with the light having a wavelength in the range of from 500 to 650 nm and a heat conductivity of 120 W/m.multidot.K or more. The sintered body is produced by adding 0.05 to 5% by weight, in terms of Ti, of a titanium compound and a sintering aid compound and, if necessary, a compound capable of forming carbon after being thermally decomposed to an aluminum nitride powder, molding the mixture, heating the molding in vacuo, air or a nitrogen gas, a hydrogen gas or an atmosphere comprising a mixture of these gases until the residual carbon content is reduced to 2.0% by weight or less, and sintering the heat-treated mixture in a nonoxidizing atmosphere containing nitrogen at 1600.degree. C. or above. The titanium compound is Ti.sub.n O.sub.2n-1 or a solid solution comprising Ti.sub.n O.sub.
    Type: Grant
    Filed: June 29, 1993
    Date of Patent: May 17, 1994
    Assignee: Sumitomo Electric Industries Ltd.
    Inventors: Akira Yamakawa, Douiti Sogabe, Kohei Shimoda
  • Patent number: 5297365
    Abstract: An industrially feasible method of grinding silicon nitride ceramics, is disclosed and provides a sufficiently smooth surface. Namely, the surface has a maximum height-roughness Rmax of 0.1 microns or less and a ten-point mean roughness Rz of 0.05 microns. Further, with this method, surface damage can be repaired while grinding. The vertical cutting feed rate of a grinding wheel into a workpiece should be within the range of 0.005-0.1 micron for each rotation of the working surface of the wheel and change linearly or stepwise. The cutting speed of the grinding wheel in a horizontal (rotational) direction should be within the range of 25 to 75 m/sec. With this arrangement, the contact pressure and grinding heat that is generated between the workpiece and the hard abrasive grains during grinding are combined. In other words, mechanical and thermal actions are combined.
    Type: Grant
    Filed: July 29, 1992
    Date of Patent: March 29, 1994
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takao Nishioka, Kenji Matsunuma, Akira Yamakawa
  • Patent number: 5292552
    Abstract: An aluminum nitride sintered body that has been fired/formed to have a prescribed sintered configuration, is used as a substrate. A metal paste of tungsten is prepared and applied to the substrate. The metal paste of tungsten contains oxide components of at least 1 percent by weight of the paste and not more than 40 percent by weight of the paste. The oxide components include SiO.sub.2 of at least 1 percent by weight of the oxide components and not more than 40 percent by weight of the oxide components. The oxide components include CaO and Al.sub.2 O.sub.3 in a weight ratio of at least 0.5 and not more than 2 of CaO to Al.sub.2 O.sub.3. The aluminum nitride sintered body coated with the metal paste is heated/fired in a non-oxidizing atmosphere at a temperature of at least 1400.degree. C. and not more than 2000.degree. C.
    Type: Grant
    Filed: June 19, 1992
    Date of Patent: March 8, 1994
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Akira Yamakawa, Akira Sasame
  • Patent number: 5293509
    Abstract: The present invention provides a sintered body of aluminum nitride comprising (i) aluminum nitride as a main component and (ii) at least one component selected from the group consisting of Zr, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Co, Ni, Nd, Ho, Ti and compounds thereof in the total amounts of not greater than 1.0 wt. % and not less than 0.01 wt. % in terms of elements on the basis of sintered body, the sintered body being colored and having a thermal conductivity of at least 150 W/mK. The sintered body is useful for the preparation of circuit boards having printed circuits thereon and highly heat-releasing ceramic packages for semiconductive devices.
    Type: Grant
    Filed: July 6, 1993
    Date of Patent: March 8, 1994
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Akira Yamakawa, Masaya Miyake, Hitoyuki Sakanoue, Koichi Sogabe
  • Patent number: 5280208
    Abstract: A composite bearing structure can withstand high speed rotation has first, second and third bearing components. The first bearing component supports a radial impact force applied to a rotator during rotation, and is made of an inner ring (1) and an outer ring (2) of silicon nitride ceramic sintered bodies. The second bearing component supports an axial load applied to the rotator while maintaining a required clearance between itself and the rotator and is made of two permanent magnets (12, 13) positioned thrustdirectionally opposite to each other. The third bearing component maintains a radial rotational accuracy of the rotator, and is made of a radial dynamic pressure producing groove (5) provided on a cylindrical surface of the inner ring (1).
    Type: Grant
    Filed: August 5, 1992
    Date of Patent: January 18, 1994
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Osamu Komura, Kenji Matsunuma, Norio Yasuoka, Matsuo Higuchi, Masaya Miyake, Tetsuya Katayama, Akira Yamakawa
  • Patent number: 5275772
    Abstract: The present invention relates to a silicon nitride sintered body [wherein the composition of Si.sub.3 N.sub.4 -first aid (Y.sub.2 O.sub.3 +MgO)-second aid (at least one of Al.sub.2 O.sub.3 and AlN)] falls within a range defined by lines joining points A, B, C and D in FIG. 1, the crystal phase of the sintered body contains both .alpha.-Si.sub.3 N.sub.4 and .beta.'-sialon, and the relative density is 98% or more. This sintered body is produced by subjecting a green compact of the above-described source to primary sintering in a nitrogen gas atmosphere at 1300 to 1700.degree. C. so that the relative density reaches 96% or more, and the precipitation ratio of the .alpha.-Si.sub.3 N.sub.4 crystal phases to the .beta.'-sialon crystal phase in the sintered body is in the range of from 40:60 to 80:20; and then subjecting the primary sintered body to secondary sintering in a nitrogen gas atmosphere at 1300 to 1700.degree. C. so that the relative density reaches 98% or more.
    Type: Grant
    Filed: October 5, 1992
    Date of Patent: January 4, 1994
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takehisa Yamamoto, Takao Nishioka, Kenji Matsunuma, Akira Yamakawa, Masaya Miyake
  • Patent number: 5275986
    Abstract: A silicon nitride sintered body comprising .alpha.-silicon nitride including .alpha.'-sialon and .beta.'-sialon including .beta.-silicon nitride in which the content of the .alpha.-silicon nitride including .alpha.'-sialon in the surface part thereof is less than its content in the inner part thereof. The silicon nitride sintered body is excellent in mechanical strength at ordinary temperature, productivity and cost efficiency.
    Type: Grant
    Filed: September 8, 1992
    Date of Patent: January 4, 1994
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takehisa Yamamoto, Takao Nishioka, Tomoyuki Awazu, Akira Yamakawa
  • Patent number: 5273700
    Abstract: An aluminum nitride sintered body characterized by comprising aluminum nitride as the main component, containing a titanium compound, and having a black color, a transmittance of 10% or less with the light having a wavelength in the range of from 500 to 650 nm and a heat conductivity of 120 W/m.multidot.K or more. The sintered body is produced by adding 0.05 to 5% by weight, in terms of Ti, of a titanium compound and a sintering aid compound and, if necessary, a compound capable of forming carbon after being thermally decomposed to an aluminum nitride powder, molding the mixture, heating the molding in vacuo, air or a nitrogen gas, a hydrogen gas or an atmosphere comprising a mixture of these gases until the residual carbon content is reduced to 2.0% by weight or less, and sintering the heat-treated mixture in a nonoxidizing atmosphere containing nitrogen at 1600.degree. C. or above. The titanium compound is Ti.sub.n O.sub.2n-1 or a solid solution comprising Ti.sub.n O.sub.
    Type: Grant
    Filed: March 16, 1992
    Date of Patent: December 28, 1993
    Assignee: Sumitomo Electric Industries Ltd.
    Inventors: Akira Yamakawa, Kouiti Sogabe, Kohei Shimoda, Masaya Miyake
  • Patent number: 5264388
    Abstract: The present invention provides a sintered body of aluminum nitride comprising (i) aluminum nitride as a main component and (ii) at least one component selected from the group consisting of Zr, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Co, Ni, Nd, Ho, Ti, and compounds thereof in the total amounts of not greater than 1.0 wt. % and not less than 0.01 wt. % in terms of elements on the basis of sintered body, the sintered body being colored and having a thermal conductivity of at least 150 W/mK. The sintered body is useful for the preparation of circuit boards having printed circuits thereon and highly heat-releasing ceramic packages for semiconductive devices.
    Type: Grant
    Filed: January 17, 1992
    Date of Patent: November 23, 1993
    Assignee: Sumitomo Electric Industries, Inc.
    Inventors: Akira Yamakawa, Masaya Miyake, Hitoyuki Sakanoue, Koichi Sogabe
  • Patent number: 5262366
    Abstract: A ceramic compact having excellent high temperature strength, toughness and reliability, which comprises a matrix preferably composed predominantly of silicon nitride and ceramic fibers uniformly dispersed in the matrix and orientated in a desired direction, said matrix and fibers being closely bonded by sintering. This compact is produced, for example, by preparing a shaped body of silicon, for example, in which ceramic fibers are uniformly dispersed by centrifugal casting and then heating and nitriding the shaped body in a nitrogen atmosphere to form a fiber-reinforced silicon nitride sintered compact. The ceramic fibers may include such fibers as aluminum oxide or silicon carbide fibers. Sintering assistants, such as silicon nitride, may be used to prepare the sintered compact.
    Type: Grant
    Filed: October 26, 1990
    Date of Patent: November 16, 1993
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Akira Yamakawa, Yoshihiko Doi, Masaya Miyake
  • Patent number: 5229549
    Abstract: A ceramic electrically insulating circuit board (1) has an electrically conductive plug (4a) tightly filling a through-hole (2) formed in the circuit board (1) made of aluminum nitride including a low, up to 1% by weight at the most, content of an oxide phase as a sintering assistant. The conductive plug is formed by putting high melting point metal paste (10) into the through-hole and sintering either the board prior to the metal paste or sintering both, the board and the paste, simultaneously. Then, causing melted copper or copper alloy (11) to permeate into gaps or interstices in the sintered high-melting point metal plug to form a tight seal of the hole and good electrical contacts of the conductive plug and any circuits on both sides of the board.
    Type: Grant
    Filed: September 3, 1991
    Date of Patent: July 20, 1993
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Akira Yamakawa, Mitsuo Osada, Nobuo Ogasa
  • Patent number: 5219803
    Abstract: The present invention provides a sintered body of aluminum nitride comprising (i) aluminum nitride as a main component and (ii) at least one component selected from the group consisting of Zr, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Co, Ni, Nd, Ho, Ti and compounds thereof in the total amounts of not greater than 1.0 wt.% and not less than 0.01 wt.% in terms of elements on the basis of sintered body, the sintered body being colored and having a thermal conductivity of at least 150 W/mK. The sintered body is useful for the preparation of circuit boards having printed circuits thereon and highly heat-releasing ceramic packages for semiconductive devices.
    Type: Grant
    Filed: December 5, 1991
    Date of Patent: June 15, 1993
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Akira Yamakawa, Masaya Miyake, Hitoyuki Sakanoue, Koichi Sogabe
  • Patent number: 5217305
    Abstract: For evaluating mechanical properties of ceramics such as silicon nitride in a nondestructive manner, a specific heat of ceramic test samples to be evaluated is measured at a temperature not higher than room temperature. A comparison is made between a measured value of the specific heat of the test sample and a known value of a specific heat of a ceramic reference sample at the same temperature not higher than room temperature. The comparison, permits making conclusions regarding the mechanical properties of the ceramic test samples based on the known mechanical properties of the ceramic reference sample. The creep strength is given as one example of the mechanical properties that may be ascertained by a nondestructive inspection that may be part of a production line, whereby the mechanical properties of the individual ceramic products may be guaranteed in practice.
    Type: Grant
    Filed: April 13, 1992
    Date of Patent: June 8, 1993
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Akira Yamakawa, Masaya Miyake, Kozo Ishizaki, Koji Watari
  • Patent number: 5214005
    Abstract: A glass-aluminum nitride composite comprising a sintered body is produced by adding glass powder to aluminum nitride grains having an oxygen content of less than 2% and a mean grain diameter of 1.0 .mu.m or more and subjecting the mixture to molding and sintering. A suitable glass is one based on borosilicate and the addition of an AlN whisker serves to improve the strength. The composite material of the present invention has a high heat conductivity, a low permittivity and a high strength and is suitable as a semiconductor packaging material.
    Type: Grant
    Filed: January 14, 1992
    Date of Patent: May 25, 1993
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Akira Yamakawa, Koichi Sogabe
  • Patent number: 5204297
    Abstract: The present invention relates to a silicon nitride sintered body [wherein the composition of Si.sub.3 N.sub.4 -first aid (Y.sub.2 O.sub.3 +MgO)-second aid (at least one of Al.sub.2 O.sub.3 and AlN)] falls within a range defined by lines joining points A, B, C and D in FIG. 1, the crystal phase of the sintered body contains both .alpha.-Si.sub.3 N.sub.4 and .beta.'-sialon, and the relative density is 98% or more. This sintered body is produced by subjecting a green compact of the above-described source to primary sintering in a nitrogen gas atmosphere at 1300.degree. to 1700.degree. C. so that the relative density reaches 96% or more, and the precipitation ratio of the .alpha.-Si.sub.3 N.sub.4 crystal phases to the .beta.'-sialon crystal phase in the sintered body is in the range of from 40:60 to 80:20; and then subjecting the primary sintered body to secondary sintering in a nitrogen gas atmosphere at 1300.degree. to 1700.degree. C. so that the relative density reaches 98% or more.
    Type: Grant
    Filed: January 27, 1992
    Date of Patent: April 20, 1993
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takehisa Yamamoto, Takao Nishioka, Kenji Matsunuma, Akira Yamakawa, Masaya Miyake
  • Patent number: 5190601
    Abstract: Disclosed herein is a method of making a surface structure on a ceramic substrate capable of suppressing diffusion of Ni to an Au plating layer and of reducing the necessary thickness of the Au plating layer. A metallized layer (12), Ni layer (13) and Au layer (14) are formed in this order on a surface of a ceramic substrate (11). The substrate (11) is heated in a non-oxidizing atmosphere to cause an alloying reaction between the Ni layer (13) and the Au layer (14). Thereafter, an Au plating layer (16) is formed on the NiAu alloy layer (15). Since Ni in the NiAu alloy layer is not easily released, diffusion of Ni into the Au plating layer can be suppressed sufficiently. Therefore, the Au plating layer can be small in thickness, generally less than 1 micron.
    Type: Grant
    Filed: December 13, 1991
    Date of Patent: March 2, 1993
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Akira Yamakawa, Akira Sasame