Patents by Inventor Alain Dransart

Alain Dransart has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11730953
    Abstract: The present disclosure discusses a system and methods for a deep brain stimulation lead. More particularly, the disclosure discusses a stimulation lead that includes one or more silicon based barrier layers within a MEMS film. The silicon based barrier layers can improve device reliability and durability. The silicon based barrier layers can also improve adhesion between the layers of the MEMS film.
    Type: Grant
    Filed: October 13, 2021
    Date of Patent: August 22, 2023
    Inventors: André Mercanzini, Alain Jordan, Alexandre Michalis, Marc Boers, Alain Dransart
  • Publication number: 20220266024
    Abstract: The present disclosure describes systems and methods for recording electrical activity, such as local field potentials. The system can include a recording patch that is placed inline between an implanted neurological lead and an implantable pulse stimulator. The recording patch can include recording and amplification circuitry that detects, records, and amplifies electrical activity (also referred to as signals) from a target site. The system can be used to select over which of the lead's electrodes therapeutic stimulations are delivered.
    Type: Application
    Filed: May 10, 2022
    Publication date: August 25, 2022
    Applicant: ALEVA NEUROTHERAPEUTICS
    Inventors: Andre Mercanzini, Alain Dransart, Khoa Nguyen
  • Patent number: 11344728
    Abstract: The present disclosure describes systems and methods for recording electrical activity, such as local field potentials. The system can include a recording patch that is placed inline between an implanted neurological lead and an implantable pulse stimulator. The recording patch can include recording and amplification circuitry that detects, records, and amplifies electrical activity (also referred to as signals) from a target site. The system can be used to select over which of the lead's electrodes therapeutic stimulations are delivered.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: May 31, 2022
    Assignee: ALEVA NEUROTHERAPEUTICS
    Inventors: Andre Mercanzini, Alain Dransart, Khoa Nguyen
  • Publication number: 20220032043
    Abstract: The present disclosure discusses a system and methods for a deep brain stimulation lead. More particularly, the disclosure discusses a stimulation lead that includes one or more silicon based barrier layers within a MEMS film. The silicon based barrier layers can improve device reliability and durability. The silicon based barrier layers can also improve adhesion between the layers of the MEMS film.
    Type: Application
    Filed: October 13, 2021
    Publication date: February 3, 2022
    Applicant: Aleva Neurotherapeutics
    Inventors: André MERCANZINI, Alain Jordan, Alexandre Michalis, Marc Boers, Alain Dransart
  • Patent number: 11167126
    Abstract: The present disclosure discusses a system and methods for a deep brain stimulation lead. More particularly, the disclosure discusses a stimulation lead that includes one or more silicon based barrier layers within a MEMS film. The silicon based barrier layers can improve device reliability and durability. The silicon based barrier layers can also improve adhesion between the layers of the MEMS film.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: November 9, 2021
    Assignee: ALEVA NEUROTHERAPEUTICS
    Inventors: André Mercanzini, Alain Jordan, Alexandre Michalis, Marc Boers, Alain Dransart
  • Publication number: 20200376276
    Abstract: The present disclosure describes systems and methods for recording electrical activity, such as local field potentials. The system can include a recording patch that is placed inline between an implanted neurological lead and an implantable pulse stimulator. The recording patch can include recording and amplification circuitry that detects, records, and amplifies electrical activity (also referred to as signals) from a target site. The system can be used to select over which of the lead's electrodes therapeutic stimulations are delivered.
    Type: Application
    Filed: May 28, 2019
    Publication date: December 3, 2020
    Inventors: Andre Mercanzini, Alain Dransart, Khoa Nguyen
  • Publication number: 20200009372
    Abstract: The present disclosure discusses a system and methods for a deep brain stimulation lead. More particularly, the disclosure discusses a stimulation lead that includes one or more silicon based barrier layers within a MEMS film. The silicon based barrier layers can improve device reliability and durability. The silicon based barrier layers can also improve adhesion between the layers of the MEMS film.
    Type: Application
    Filed: August 26, 2019
    Publication date: January 9, 2020
    Inventors: André MERCANZINI, Alain Jordan, Alexandre Michalis, Marc Boers, Alain Dransart
  • Patent number: 10441779
    Abstract: The present disclosure discusses a system and methods for a deep brain stimulation lead. More particularly, the disclosure discusses a stimulation lead that includes one or more silicon based barrier layers within a MEMS film. The silicon based barrier layers can improve device reliability and durability. The silicon based barrier layers can also improve adhesion between the layers of the MEMS film.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: October 15, 2019
    Assignee: ALEVA NEUROTHERAPEUTICS
    Inventors: Andre Mercanzini, Alain Jordan, Alexandre Michalis, Marc Boers, Alain Dransart
  • Patent number: 10201707
    Abstract: Techniques using electrical stimulation for treating an Autoimmune Disease by means of an implantable pulse generator and at least one electrode. An electrode lead is surgically implanted in a region of the insular cortex to deliver electrical stimulation. The at least one electrode lead and implantable pulse generator contain features that allow the electrical stimulation to be directed to specific volumes of the insular cortex, and ensure that non-therapeutic volumes do not receive electrical stimulation.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: February 12, 2019
    Assignee: ALEVA NEUROTHERAPEUTICS
    Inventors: Ingo Hartig, Andre Mercanzini, Alain Jordan, Alexandre Michalis, Marc Boers, Alain Dransart
  • Publication number: 20180296825
    Abstract: The present disclosure discusses a system and methods for a deep brain stimulation lead. More particularly, the disclosure discusses a stimulation lead that includes one or more silicon based barrier layers within a MEMS film. The silicon based barrier layers can improve device reliability and durability. The silicon based barrier layers can also improve adhesion between the layers of the MEMS film.
    Type: Application
    Filed: June 22, 2018
    Publication date: October 18, 2018
    Inventors: Andre Mercanzini, Alain Jordan, Alexandre Michalis, Marc Boers, Alain Dransart
  • Patent number: 10065031
    Abstract: The present disclosure discusses a system and methods for a deep brain stimulation lead. More particularly, the disclosure discusses a stimulation lead that includes one or more silicon based barrier layers within a MEMS film. The silicon based barrier layers can improve device reliability and durability. The silicon based barrier layers can also improve adhesion between the layers of the MEMS film.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: September 4, 2018
    Assignee: ALEVA NEUROTHERAPEUTICS
    Inventors: Andre Mercanzini, Alain Jordan, Alexandre Michalis, Marc Boers, Alain Dransart
  • Patent number: 10004895
    Abstract: The present disclosure discusses a system and methods for a deep brain stimulation lead. More particularly, the disclosure discusses a stimulation lead that includes one or more silicon based barrier layers within a MEMS film. The silicon based barrier layers can improve device reliability and durability. The silicon based barrier layers can also improve adhesion between the layers of the MEMS film.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: June 26, 2018
    Assignee: ALEVA NEUROTHERAPEUTICS
    Inventors: Andre Mercanzini, Alain Jordan, Alexandre Michalis, Marc Boers, Alain Dransart
  • Publication number: 20180161574
    Abstract: Techniques using electrical stimulation for treating an Autoimmune Disease by means of an implantable pulse generator and at least one electrode. An electrode lead is surgically implanted in a region of the insular cortex to deliver electrical stimulation. The at least one electrode lead and implantable pulse generator contain features that allow the electrical stimulation to be directed to specific volumes of the insular cortex, and ensure that non-therapeutic volumes do not receive electrical stimulation.
    Type: Application
    Filed: January 23, 2018
    Publication date: June 14, 2018
    Inventors: Ingo Hartig, Andre Mercanzini, Alain Jordan, Alexandre Michalis, Marc Boers, Alain Dransart
  • Patent number: 9925376
    Abstract: Techniques using electrical stimulation for treating an Autoimmune Disease by means of an implantable pulse generator and at least one electrode. An electrode lead is surgically implanted in a region of the insular cortex to deliver electrical stimulation. The at least one electrode lead and implantable pulse generator contain features that allow the electrical stimulation to be directed to specific volumes of the insular cortex, and ensure that non-therapeutic volumes do not receive electrical stimulation.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: March 27, 2018
    Assignee: ALEVA NEUROTHERAPEUTICS
    Inventors: Ingo Hartig, Andre Mercanzini, Alain Jordan, Alexandre Michalis, Marc Boers, Alain Dransart
  • Publication number: 20170136238
    Abstract: Techniques using electrical stimulation for treating an Autoimmune Disease by means of an implantable pulse generator and at least one electrode. An electrode lead is surgically implanted in a region of the insular cortex to deliver electrical stimulation. The at least one electrode lead and implantable pulse generator contain features that allow the electrical stimulation to be directed to specific volumes of the insular cortex, and ensure that non-therapeutic volumes do not receive electrical stimulation.
    Type: Application
    Filed: February 1, 2017
    Publication date: May 18, 2017
    Inventors: Ingo Hartig, Andre Mercanzini, Alain Jordan, Alexandre Michalis, Marc Boers, Alain Dransart
  • Publication number: 20170028191
    Abstract: The present disclosure discusses a system and methods for a deep brain stimulation lead. More particularly, the disclosure discusses a stimulation lead that includes one or more silicon based barrier layers within a MEMS film. The silicon based barrier layers can improve device reliability and durability. The silicon based barrier layers can also improve adhesion between the layers of the MEMS film.
    Type: Application
    Filed: September 30, 2016
    Publication date: February 2, 2017
    Inventors: Andre Mercanzini, Alain Jordan, Alexandre Michalis, Marc Boers, Alain Dransart
  • Patent number: 9474894
    Abstract: The present disclosure discusses a system and methods for a deep brain stimulation lead. More particularly, the disclosure discusses a stimulation lead that includes one or more silicon based barrier layers within a MEMS film. The silicon based barrier layers can improve device reliability and durability. The silicon based barrier layers can also improve adhesion between the layers of the MEMS film.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: October 25, 2016
    Assignee: ALEVA NEUROTHERAPEUTICS
    Inventors: Andre Mercanzini, Alain Jordan, Alexandre Michalis, Marc Boers, Alain Dransart
  • Publication number: 20160059004
    Abstract: The present disclosure discusses a system and methods for a deep brain stimulation lead. More particularly, the disclosure discusses a stimulation lead that includes one or more silicon based barrier layers within a MEMS film. The silicon based barrier layers can improve device reliability and durability. The silicon based barrier layers can also improve adhesion between the layers of the MEMS film.
    Type: Application
    Filed: August 27, 2014
    Publication date: March 3, 2016
    Inventors: Andre Mercanzini, Alain Jordan, Alexandre Michalis, Marc Boers, Alain Dransart
  • Patent number: 5954971
    Abstract: Automated filtration of whole blood or blood components is accomplished in a manner that ensures consistent flow or pressure characteristics through the filter. A feedback circuit monitors pressure in the vicinity of the filter inlet and controls operation of a fluid pump that sends one or more unfiltered blood components into the filter. Using this arrangement, a variety of parameters relating to filtration efficacy can be precisely controlled, including flow rate, flow pressure, and average pressure over a predetermined volume. The system may provide an alarm or automatic cut-off in the event a maximum value of one of the parameters is reached or exceeded. The system is also capable of serially filtering multiple blood products through the single filter and accommodating different flow or pressure characteristics associated with each such product.
    Type: Grant
    Filed: January 7, 1997
    Date of Patent: September 21, 1999
    Assignee: Haemonetics Corporation
    Inventors: Etienne Pages, Alain Dransart, Yair Egozy, Yves Baratelli