Patents by Inventor Alan Devoe

Alan Devoe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10163573
    Abstract: A capacitor assembly includes a capacitor having ends. A terminal covers less than an area of one end. A wire bond has opposing ends with one end being coupled to the terminal and is configured to break connection with a circuit when an electrical current through the wire bond reaches a fusing current. An energy storage module includes at least two capacitor assemblies. The wire bond of one capacitor is electrically connected to the second terminal of an adjacent capacitor. An energy storage assembly includes two energy storage modules stacked one on top of the other. A pulse forming network includes conductors and at least two energy storage modules. A method of making a module includes charging each of the capacitors, removing each capacitor that fails, connecting one end of a wire bond to one terminal and connecting the other end to an adjacent capacitor or to a conductor.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: December 25, 2018
    Assignee: Presidio Components. Inc.
    Inventor: Alan Devoe
  • Publication number: 20180366741
    Abstract: Fuel cell devices and systems are provided. In certain embodiments, the devices include a ceramic support structure having a length, a width, and a thickness with the length direction being the dominant direction of thermal expansion. A reaction zone having at least one active layer therein is spaced from the first end and includes first and second opposing electrodes, associated active first and second gas passages, and electrolyte. The active first gas passage includes sub-passages extending in the y direction and spaced apart in the x direction. An artery flow passage extends from the first end along the length and into the reaction zone and is fluidicly coupled to the sub-passages of the active first gas passage. The thickness of the artery flow passage is greater than the thickness of the sub-passages.
    Type: Application
    Filed: August 27, 2018
    Publication date: December 20, 2018
    Inventors: Alan Devoe, Lambert Devoe
  • Patent number: 10153496
    Abstract: Fuel cell devices and fuel cell systems are provided. The fuel cell devices may include one or more active layers containing active cells that are connected electrically in series. The active cells include anodes and cathodes spaced apart along the length, with each including a porous portion and a non-porous conductor portion. The active cells reside between opposing porous anode and cathode portions. The electrical series connections between active cells are made between the non-porous conductor portions. In certain embodiments, the electrical series connections are made by direct contact between the non-porous conductor portions. In certain embodiments, the electrical series connections are made by non-porous conductive vias or elements that extend through an intervening support structure that separates the non-porous anode conductor portions from the non-porous cathode conductor portions.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: December 11, 2018
    Inventors: Alan Devoe, Lambert Devoe
  • Publication number: 20180294102
    Abstract: A monolithic ceramic capacitor has a plurality of dielectric layers and a plurality of conductive layers sintered together to form a substantially monolithic ceramic body. The ceramic body defines at least one void between the dielectric and conductive layers. The void is wholly enclosed within the ceramic body and bounded by at least a portion of a dielectric layer, a first conductive layer, and a second conductive layer. Within the dielectric body, the first and second conductive layers are connected in a nonconductive manner.
    Type: Application
    Filed: April 2, 2018
    Publication date: October 11, 2018
    Inventors: Hung Van Trinh, Alan Devoe, Lambert Devoe
  • Patent number: 10096846
    Abstract: A fuel cell device with a rectangular solid ceramic substrate extending in length between first and second end surfaces where thermal expansion occurs primarily along the length. An active structure internal to the exterior surface extends along only a first portion of the length and has an anode, cathode and electrolyte therebetween. The first portion is heated to generate a fuel cell reaction. A remaining portion of the length is a non-heated, non-active section lacking opposing anode and cathode where heat dissipates along the remaining portion away from the first portion. A second portion of the length in the remaining portion is distanced away from the first portion such that its exterior surface is at low temperature when the first portion is heated. The anode and cathode have electrical pathways extending from the internal active structure to the exterior surface in the second portion for electrical connection at low temperature.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: October 9, 2018
    Inventors: Alan Devoe, Lambert Devoe
  • Patent number: 10062911
    Abstract: Fuel cell devices and systems are provided. In certain embodiments, the devices include a ceramic support structure having a length, a width, and a thickness with the length direction being the dominant direction of thermal expansion. A reaction zone having at least one active layer therein is spaced from the first end and includes first and second opposing electrodes, associated active first and second gas passages, and electrolyte. The active first gas passage includes sub-passages extending in the y direction and spaced apart in the x direction. An artery flow passage extends from the first end along the length and into the reaction zone and is fluidicly coupled to the sub-passages of the active first gas passage. The thickness of the artery flow passage is greater than the thickness of the sub-passages.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: August 28, 2018
    Inventors: Alan Devoe, Lambert Devoe
  • Publication number: 20180145360
    Abstract: The invention provides solid oxide fuel cell devices and systems, each including an elongate substrate having an active end region for heating to an operating reaction temperature, and a non-active end region that remains at a low temperature below the operating reaction temperature when the active end region is heated. An electrolyte is disposed between anodes and cathodes in the active end region, and the anodes and cathodes each have an electrical pathway extending to an exterior surface in the non-active end region for electrical connection at low temperature. The system further includes the devices positioned with their active end regions in a hot zone chamber and their non-active end regions extending outside the chamber. A heat source is coupled to the chamber to heat the active end regions to the operating reaction temperature, and fuel and air supplies are coupled to the substrates in the non-active end regions.
    Type: Application
    Filed: January 2, 2018
    Publication date: May 24, 2018
    Inventors: Alan Devoe, Lambert Devoe
  • Patent number: 9859582
    Abstract: The invention provides tubular solid oxide fuel cell devices and a fuel cell system incorporating a plurality of the fuel devices, each device including an elongate tube having a reaction zone for heating to an operating reaction temperature, and at least one cold zone that remains at a low temperature below the operating reaction temperature when the reaction zone is heated. An electrolyte is disposed between anodes and cathodes in the reaction zone, and the anode and cathode each have an electrical pathway extending to an exterior surface in a cold zone for electrical connection at low temperature. In one embodiment, the tubular device is a spiral rolled structure, and in another embodiment, the tubular device is a concentrically arranged device. The system further includes the devices positioned with their reaction zones in a hot zone chamber and their cold zones extending outside the hot zone chamber.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: January 2, 2018
    Inventors: Alan Devoe, Lambert Devoe
  • Publication number: 20170324107
    Abstract: A fuel cell device is prepared by dispensing and drying electrode and ceramic pastes around two pluralities of removable physical structures to form electrode layers having constant width and a shape that conforms lengthwise to a curvature of the physical structures. An electrolyte ceramic layer is positioned between electrode layers, forming an active cell portion where anode is in opposing relation to cathode with electrolyte therebetween, and passive cell portions where ceramic is adjacent the active cell portion. The layers are laminated, the physical structures pulled out, and the lamination sintered to form an active cell with active passages in anodes and cathodes and passive support structure with passive passages in ceramic. End portions of at least one of the two pluralities of physical structures are curved away from the same end portion of the other of the two pluralities resulting in a split end in the fuel cell device.
    Type: Application
    Filed: July 25, 2017
    Publication date: November 9, 2017
    Inventors: Alan Devoe, Lambert Devoe
  • Patent number: 9786437
    Abstract: A multilayer chip capacitor includes electrodes comprised of numerous, closely spaced conductive layers interposed within a dielectric laminate. Adjacent conductive layers are essentially non-overlapping, so that fringe capacitance between opposing electrodes provides substantially all of the capacitance. The conductive layers may be shaped to form a non-planer boundary between electrodes. An additional high frequency integrated capacitor is formed from external electrode plates. The non-planar electrode boundary principle is also applied to discoidal capacitors in the form of a non-concentric electrode boundary.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: October 10, 2017
    Assignee: Presidio Components, Inc.
    Inventors: Hung Van Trinh, Alan Devoe
  • Publication number: 20170279136
    Abstract: A fuel cell device with a rectangular solid ceramic substrate extending in length between first and second end surfaces where thermal expansion occurs primarily along the length. An active structure internal to the exterior surface extends along only a first portion of the length and has an anode, cathode and electrolyte therebetween. The first portion is heated to generate a fuel cell reaction. A remaining portion of the length is a non-heated, non-active section lacking opposing anode and cathode where heat dissipates along the remaining portion away from the first portion. A second portion of the length in the remaining portion is distanced away from the first portion such that its exterior surface is at low temperature when the first portion is heated. The anode and cathode have electrical pathways extending from the internal active structure to the exterior surface in the second portion for electrical connection at low temperature.
    Type: Application
    Filed: June 6, 2017
    Publication date: September 28, 2017
    Inventors: Alan Devoe, Lambert Devoe
  • Patent number: 9716286
    Abstract: An active cell is prepared by dispensing first electrode sub-layers, pressing in physical structures to partially embed them in an uppermost sub-layer, and dispensing more first electrode sub-layers wherein dispensing is in order of increasing porosity, then drying the sub-layers to form a first electrode layer. An electrolyte layer is then formed thereon. Further preparation includes dispensing second electrode sub-layers over the electrolyte layer, pressing in physical structures to partially embed them in an uppermost sub-layer, and dispensing more second electrode sub-layers wherein dispensing is in order of decreasing porosity, then drying the sub-layers to form a second electrode layer. A laminated stack is formed, then the physical structures are pulled out. Sintering then forms the active cell with active passages embedded in and supported by the sintered electrode layers, and with decreasing porosity in the electrode layers in a thickness direction away from the electrolyte layer.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: July 25, 2017
    Inventors: Alan Devoe, Lambert Devoe
  • Publication number: 20170162895
    Abstract: An active cell is prepared by dispensing first electrode sub-layers, pressing in physical structures to partially embed them in an uppermost sub-layer, and dispensing more first electrode sub-layers wherein dispensing is in order of increasing porosity, then drying the sub-layers to form a first electrode layer. An electrolyte layer is then formed thereon. Further preparation includes dispensing second electrode sub-layers over the electrolyte layer, pressing in physical structures to partially embed them in an uppermost sub-layer, and dispensing more second electrode sub-layers wherein dispensing is in order of decreasing porosity, then drying the sub-layers to form a second electrode layer. A laminated stack is formed, then the physical structures are pulled out. Sintering then forms the active cell with active passages embedded in and supported by the sintered electrode layers, and with decreasing porosity in the electrode layers in a thickness direction away from the electrolyte layer.
    Type: Application
    Filed: February 21, 2017
    Publication date: June 8, 2017
    Inventors: Alan Devoe, Lambert Devoe
  • Patent number: 9673459
    Abstract: A single monolithic ceramic substrate has rectangular dimensions with thermal expansion dominant along the length. An inactive ceramic portion substantially surrounds a fuel cell active portion of scalable power. The active portion comprises a plurality of three-layer active structures, each including an electrolyte disposed between a first polarity electrode and a second polarity electrode, the electrolyte layers being co-fired with the inactive ceramic portion, and a first or second gas passage respectively associated with each first and second polarity electrode. The plurality of active structures are stacked in the thickness dimension with alternating polarity such that first polarity electrodes of adjacent active structures face each other with the associated first gas passage shared therebetween and second polarity electrodes of adjacent active structures face each other with the associated second gas passage shared therebetween.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: June 6, 2017
    Inventors: Alan Devoe, Lambert Devoe
  • Patent number: 9577281
    Abstract: Two active cell structures are prepared each comprising anode/electrolyte/cathode layers, each anode and cathode layer having embedded spaced-apart physical structures therein. Two interconnect sublayers are prepared, each comprising a layer of non-conductive material with holes formed therein and a conductor layer formed on one surface. The sublayers are placed together with the conductor layers in contact and with the holes offset to form an interconnect layer, which is then stacked between the two active cell structures. The multi-layer stack is laminated together and the anode layer of one active cell structure and the cathode layer of the other active cell structure fill the adjacent holes in the interconnect layer. The physical structures are pulled out to reveal embedded gas passages, and the multi-layer stack is sintered to form two active cells connected in series by the interconnect layer.
    Type: Grant
    Filed: September 6, 2016
    Date of Patent: February 21, 2017
    Inventors: Alan Devoe, Lambert Devoe
  • Publication number: 20170033376
    Abstract: A fuel cell device is provided having an active central portion with an anode, a cathode, and an electrolyte therebetween. At least three elongate portions extend from the active central portion, each having a length substantially greater than a width transverse thereto such that the elongate portions each have a coefficient of thermal expansion having a dominant axis that is coextensive with its length. A fuel passage extends from a fuel inlet in a first elongate portion into the active central portion in association with the anode, and an oxidizer passage extends from an oxidizer inlet in a second elongate portion into the active central portion in association with the cathode. A gas passage extends between an opening in the third elongate portion and the active central portion. For example, the passage in the third elongate portion may be an exhaust passage for the spent fuel and/or oxidizer gasses.
    Type: Application
    Filed: June 6, 2016
    Publication date: February 2, 2017
    Inventors: Alan Devoe, Lambert Devoe
  • Publication number: 20170033393
    Abstract: Two active cell structures are prepared each comprising anode/electrolyte/cathode layers, each anode and cathode layer having embedded spaced-apart physical structures therein. Two interconnect sublayers are prepared, each comprising a layer of non-conductive material with holes formed therein and a conductor layer formed on one surface. The sublayers are placed together with the conductor layers in contact and with the holes offset to form an interconnect layer, which is then stacked between the two active cell structures. The multi-layer stack is laminated together and the anode layer of one active cell structure and the cathode layer of the other active cell structure fill the adjacent holes in the interconnect layer. The physical structures are pulled out to reveal embedded gas passages, and the multi-layer stack is sintered to form two active cells connected in series by the interconnect layer.
    Type: Application
    Filed: September 6, 2016
    Publication date: February 2, 2017
    Inventors: Alan Devoe, Lambert Devoe
  • Publication number: 20160329581
    Abstract: A single monolithic ceramic substrate has rectangular dimensions with thermal expansion dominant along the length. An inactive ceramic portion substantially surrounds a fuel cell active portion of scalable power. The active portion comprises a plurality of three-layer active structures, each including an electrolyte disposed between a first polarity electrode and a second polarity electrode, the electrolyte layers being co-fired with the inactive ceramic portion, and a first or second gas passage respectively associated with each first and second polarity electrode. The plurality of active structures are stacked in the thickness dimension with alternating polarity such that first polarity electrodes of adjacent active structures face each other with the associated first gas passage shared therebetween and second polarity electrodes of adjacent active structures face each other with the associated second gas passage shared therebetween.
    Type: Application
    Filed: July 19, 2016
    Publication date: November 10, 2016
    Inventors: Alan Devoe, Lambert Devoe
  • Publication number: 20160260986
    Abstract: Fuel cell devices and systems are provided. A reaction zone positioned along a portion of the length is configured to be heated to an operating reaction temperature, and has at least one active layer therein comprising an electrolyte separating an anode from an opposing cathode, and fuel and oxidizer gas passages adjacent the respective anode and cathode. At least one cold zone positioned from the first end along another portion of the length is configured to remain below the operating reaction temperature. The anode and cathode each have electrical pathways extending to an exterior surface in the cold zone for electrical connection at the lower temperature. The electrolyte includes at least a portion thereof comprising a ceramic material sintered from a nano-sized powder. In one embodiment, the sintered nano-sized powder provides an uneven surface topography on the electrolyte.
    Type: Application
    Filed: May 16, 2016
    Publication date: September 8, 2016
    Inventors: Alan Devoe, Lambert Devoe
  • Patent number: 9437894
    Abstract: An electrode layer is provided by forming first and second sublayers containing input passages and exhaust passages, respectively. Electrode material is positioned around a first portion of first and second pluralities of spaced-apart removable physical structures to at least partially surround the structures thereby forming an active cell portion in each sublayer. Ceramic material is positioned around second portions to form a passive support structure in each sublayer. Another passive support structure is formed opposite the first, with the active cell portion therebetween. The sublayers are laminated, the physical structures are pulled out, and the laminated sublayers are sintered to reveal spaced-apart input passages from one end of the layer through the active cell portion, and spaced-apart exhaust passages from the active cell portion to a side of the layer adjacent the other end, the input and exhaust passages embedded in and supported by the sintered electrode and ceramic materials.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: September 6, 2016
    Inventors: Alan Devoe, Lambert Devoe