Patents by Inventor Alan G. Solheim

Alan G. Solheim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7590153
    Abstract: A protocol independent multiplexer is described that allows for multiple different protocols that operate at different bit rates to be combined and output in a format that may have yet another bit rate. The multiplexer includes a series of inputting devices that are each coupled to a respective buffering device, a mapping device coupled to each of the buffering devices, and an outputting device coupled to the mapping device. Each of the inputting devices receive an input optical signal and forwards recovered data information to the corresponding buffering device. The buffering devices store the data information and output to the mapping device, the outputting being controlled by the mapping device to ensure that the buffering devices remain approximately half full. The mapping device formats the data information into individual data units and outputs the data units to the outputting device which subsequently multiplexes the data units.
    Type: Grant
    Filed: January 24, 2003
    Date of Patent: September 15, 2009
    Assignee: Nortel Networks Limited
    Inventors: Alan G. Solheim, Colin Kelly, Matthew Brown, Chris Knapton
  • Patent number: 7043159
    Abstract: A wavelength division multiplexed (WDM) apparatus is provided for a bidirectional dense WDM optical fiber communication network with cost-effective and efficient allocation of the resources available at each network node. For each fiber link, the invention uses a WDM signal composed of channels propagating in opposite directions and a band optical add-drop multiplexer (OADM) to isolate or combine a band to the WDM signal spectrum. As a result, the invention significantly reduces the number fiber connections and filtering equipment required with respect to each direction of transmission.
    Type: Grant
    Filed: August 12, 2002
    Date of Patent: May 9, 2006
    Assignee: Nortel Networks Limited
    Inventor: Alan G. Solheim
  • Patent number: 6757098
    Abstract: A modular bidirectional optical amplification system includes a multiwavelength dual amplifier building block, a multiwavelength unidirectional booster amplifier BB, a unidirectional and a bidirectional Optical Service Channel (OSC) BB, an Intelligent Optical Terminal Accessway (IOTA) module, and an interleaved filter BB. The dual amplifier BB is available in a C-band version, an E-band version and a hybrid version, and provides unidirectional or bidirectional multichannel amplification. The booster amplifier is available in a C-band version, an E-band version and in a booster plus variant; one for the C-band and one for E-band. The unidirectional and bidirectional OSC BBs provide a means for OAM&P functionality to the optical network. The IOTA BB provides multiplexing and demultiplexing, and the filter BB provides separation of the signal into grid-1 and grid-2 channels.
    Type: Grant
    Filed: March 27, 2001
    Date of Patent: June 29, 2004
    Assignee: Nortel Network Limited
    Inventors: Loren Berg, Mark R. Hinds, Robert W. Keys, Gregory D. May, Alan G. Solheim, Stephane St-Laurent
  • Patent number: 6744760
    Abstract: A communication node to be implemented within an optical fiber communication system is described that consists of a number of individual cards inserted within a node shelf. Each card is a transponder that comprises a Short-Range (SR) transceiver, a Dense Wavelength Division Multiplexed (DWDM) transceiver, and a local switch coupled to both transceivers. The local switches of the cards are coupled together and each selectively couple the transceivers within their respective cards to the local switches of other cards so that the transceivers can be further coupled to transceivers of other cards. This allows failure and congestion protection systems to be implemented within the node while not requiring the use of a central cross-connect switch.
    Type: Grant
    Filed: July 23, 1999
    Date of Patent: June 1, 2004
    Assignee: Nortel Networks Limited
    Inventor: Alan G. Solheim
  • Publication number: 20030151802
    Abstract: A modular bidirectional optical amplification system includes a multiwavelength dual amplifier building block, a multiwavelength unidirectional booster amplifier BB, a unidirectional and a bidirectional Optical Service Channel (OSC) BB, an Intelligent Optical Terminal Accessway (IOTA) module, and an interleaved filter BB. The dual amplifier BB is available in a C-band version, an E-band version and a hybrid version, and provides unidirectional or bidirectional multichannel amplification. The booster amplifier is available in a C-band version, an E-band version and in a booster plus variant; one for the C-band and one for E-band. The unidirectional and bidirectional OSC BBs provide a means for OAM&P functionality to the optical network. The IOTA BB provides multiplexing and demultiplexing, and the filter BB provides separation of the signal into grid-1 and grid-2 channels.
    Type: Application
    Filed: March 27, 2001
    Publication date: August 14, 2003
    Inventors: Loren Berg, Mark R. Hinds, Robert W. Keys, Gregory D. May, Alan G. Solheim, Stephane St-Laurent
  • Publication number: 20030133475
    Abstract: A protocol independent multiplexer is described that allows for multiple different protocols that operate at different bit rates to be combined and output in a format that may have yet another bit rate. The multiplexer includes a series of inputting devices that are each coupled to a respective buffering device, a mapping device coupled to each of the buffering devices, and an outputting device coupled to the mapping device. Each of the inputting devices receive an input optical signal and forwards recovered data information to the corresponding buffering device. The buffering devices store the data information and output to the mapping device, the outputting being controlled by the mapping device to ensure that the buffering devices remain approximately half full. The mapping device formats the data information into individual data units and outputs the data units to the outputting device which subsequently multiplexes the data units.
    Type: Application
    Filed: January 24, 2003
    Publication date: July 17, 2003
    Inventors: Alan G. Solheim, Colin Kelly, Matthew Brown, Chris Knapton
  • Patent number: 6522671
    Abstract: A protocol independent multiplexer is described that allows for multiple different protocols that operate at different bit rates to be combined and output in a format that may have yet another bit rate. The multiplexer includes a series of inputting devices that are each coupled to a respective buffering device, a mapping device coupled to each of the buffering devices, and an outputting device coupled to the mapping device. Each of the inputting devices receive an input optical signal and forwards recovered data information to the corresponding buffering device. The buffering devices store the data information and output to the mapping device, the outputting being controlled by the mapping device to ensure that the buffering devices remain approximately half full. The mapping device formats the data information into individual data units and outputs the data units to the outputting device which subsequently multiplexes the data units.
    Type: Grant
    Filed: May 10, 1999
    Date of Patent: February 18, 2003
    Assignee: Nortel Networks Limited
    Inventors: Alan G. Solheim, Colin Kelly, Matthew Brown, Chris Knapton
  • Patent number: 6236499
    Abstract: A modular bidirectional optical amplification system includes a multiwavelength dual amplifier building block, a multiwavelength unidirectional booster amplifier BB, a unidirectional and a bidirectional Optical Service Channel (OSC) BB, an Intelligent Optical Terminal Accessway (IOTA) module, and an interleaved filter BB. The dual amplifier BB is available in a C-band version, an E-band version and a hybrid version, and provides unidirectional or bidirectional multichannel amplification. The booster amplifier is available in a C-band version, an E-band version and in a booster plus variant;. one for the C-band and one for E-band. The unidirectional and bidirectional OSC BBs provide a means for OAM&P functionality to the optical network. The IOTA BB provides multiplexing and demultiplexing, and the filter BB provides separation of the signal into grid-1 and grid-2 channels.
    Type: Grant
    Filed: April 15, 1999
    Date of Patent: May 22, 2001
    Assignee: Nortel Networks Limited
    Inventors: Loren S. Berg, Mark R. Hinds, Robert W. Keys, Gregory D. May, Alan G. Solheim, Stephane St-Laurent
  • Patent number: 6188816
    Abstract: A filter topography is possible that can reduce the overall cost of a single Optical Add-Drop Multiplexer (OADM) or a series of OADMs that are within a network. The key is to have one of the wavelengths of a WDM signal being input to a filtering apparatus empty. The filtering apparatus can then with a reduced cost filter the received WDM signal such that a channel at a wavelength adjacent to the empty wavelength is removed and a channel is inserted at the previously empty wavelength. In one implementation of this topology within an OADM, a single filter can be used to perform both filtering operations due to the empty wavelength ensuring no corruption of the removed channel at the adjacent wavelength. In another implementation, the filtering operations are performed by two separate filters that each have asymmetrically reduced tolerances. In either case in which there is a reduced number of filters or reduced tolerances for those filters, a reduction in cost will be found.
    Type: Grant
    Filed: September 8, 1999
    Date of Patent: February 13, 2001
    Assignee: Nortel Networks Limited
    Inventor: Alan G. Solheim
  • Patent number: 6101012
    Abstract: An add/drop multiplexer/demultiplexer (ADM) for switching, modulating and attenuating optical signals in a fiber optic network employing wavelength division multiplexing (WDM) is disclosed. The ADM is equipped an optical multiplexer for splitting an input WDM signal into individual optical signals, leading to respective 2.times.2 switches. Each switch has another input originating from a plurality of "add lines", and selects one of its inputs to be dropped and the other to continue along a main signal path. The retained signals may be modulated and attenuated prior to being tapped and finally multiplexed together by a WDM multiplexer. The tapped signals are optoelectronically converted and fed back to a controller, preferably a digital signal processor running a software algorithm, which controls the switching, modulation and attenuation.
    Type: Grant
    Filed: June 30, 1999
    Date of Patent: August 8, 2000
    Assignee: Nortel Networks Corporation
    Inventors: David John Danagher, Alan G. Solheim, Maurice S. O'Sullivan, Richard A. Habel, Kim Byron Roberts, Duncan John Forbes, Nigel Baker, Ian Hardcastle, Takis Hadjifotiou, Bipin Patel, Giuseppe Bordogna, James St. Leger Harley
  • Patent number: 5959749
    Abstract: An add/drop multiplexer/demultiplexer (ADM) for switching, modulating and attenuating optical signals in a fiber optic network employing wavelength division multiplexing (WDM) is disclosed. The ADM is equipped an optical multiplexer for splitting an input WDM signal into individual optical signals, leading to respective 2.times.2 switches. Each switch has another input originating from a plurality of "add lines", and selects one of its inputs to be dropped and the other to continue along a main signal path. The retained signals may be modulated and attenuated prior to being tapped and finally multiplexed together by a WDM multiplexer. The tapped signals are optoelectronically converted and fed back to a controller, preferably a digital signal processor running a software algorithm, which controls the switching, modulation and attenuation.
    Type: Grant
    Filed: May 20, 1997
    Date of Patent: September 28, 1999
    Assignee: Nortel Networks Corporation
    Inventors: David John Danagher, Alan G. Solheim, Maurice S. O'Sullivan, Richard A. Habel, Kim Byron Roberts, Duncan John Forbes, Nigel Baker, Ian Hardcastle, Takis Hadjifotiou, Bipin Patel, Giuseppe Bordogna, James St. Leger Harley
  • Patent number: 5661046
    Abstract: A BiCMOS method and device. The BiCMOS device achieves improved performance through the use of wrap-around silicide contacts, improved MOS gate formation, the use of n- and p-type LDD's, the formation of very shallow base regions in bipolar transistors, and through separate implants for base regions of the bipolar transistors and source/drains of the MOSFETS.
    Type: Grant
    Filed: August 4, 1994
    Date of Patent: August 26, 1997
    Assignee: National Semiconductor Corporation
    Inventors: Vida Ilderem, Ali A. Iranmanesh, Alan G. Solheim, Christopher S. Blair, Rick C. Jerome, Rajeeva Lahri, Madan Biswal
  • Patent number: 5443994
    Abstract: A bipolar transistor and a PMOS device achieves improved performance through the use of borosilicate glass (BSG) as the sidewall spacer material. The sidewall spacer material also is used for injection of boron into adjacent substrate material for forming shallow p+ doped junctions. By using diffusion from the BSG to form and/or maintain (during subsequent processing) a bipolar base region, or a PMOS source and/or drain region, rather than ion implantation, a base region is formed which is both shallow and has a low sheet resistance.
    Type: Grant
    Filed: September 23, 1994
    Date of Patent: August 22, 1995
    Assignee: National Semiconductor Corporation
    Inventor: Alan G. Solheim
  • Patent number: 5424572
    Abstract: A contact structure and a method for fabrication is disclosed for a semiconductor device that includes a plurality of semiconductor regions along the surface of the device, each region having a top surface and at least a sidewall surface, where a first part of the semiconductor regions are of a first conductivity type and a second part of semiconductor regions are of a second conductivity type. Select dielectric spacers are formed along the sidewalls of the select semiconductor regions of first conductivity type while a refractory metal such as titanium, molybdenum or tungsten is used to form contact on the sidewalls of the semiconductor regions of second conductivity type. This structure is most advantageous in bipolar, CMOS and BiCMOS transistor structures as it allows the formation of the sidewall spacers on emitter/gate contacts while having local metal interconnects with the reactive metal on the sidewall of the select base/source/drain contacts.
    Type: Grant
    Filed: November 10, 1992
    Date of Patent: June 13, 1995
    Assignee: National Semiconductor Corporation
    Inventor: Alan G. Solheim
  • Patent number: 5338694
    Abstract: A BiCMOS method and device. The BiCMOS device achieves improved performance through the use of wrap-around silicide contacts, improved MOS gate formation, the use of n- and p-type LDD's, the formation of very shallow base regions in bipolar transistors, and through separate implants for base regions of the bipolar transistors and source/drains of the MOSFETS.
    Type: Grant
    Filed: March 9, 1992
    Date of Patent: August 16, 1994
    Assignee: National Semiconductor Corporation
    Inventors: Vida Ilderem, Ali A. Iranmanesh, Alan G. Solheim, Christopher S. Blair, Rick C. Jerome, Rajeeva Lahri, Madan Biswal
  • Patent number: 5338696
    Abstract: A BiCMOS method and device. The BiCMOS device achieves improved performance through the use of wraparound silicide contacts, improved MOS gate formation, the use of n- and p-type LDD's, the formation of very shallow base regions in bipolar transistors, and through separate implants for base regions of the bipolar transistors and source/drains of the MOSFETS.
    Type: Grant
    Filed: March 1, 1993
    Date of Patent: August 16, 1994
    Assignee: National Semiconductor Corporation
    Inventors: Vida Ilderem, Ali A. Iranmanesh, Alan G. Solheim, Christopher S. Blair, Rick C. Jerome, Rajeeva Lahri, Madan Biswal
  • Patent number: 5242854
    Abstract: A high performance bipolar transistor and a method of fabrication. Base resistance is reduced by a self-aligned silicide formed in the single-crystal region of the extrinsic base, thereby eliminating the polysilicon to single-crystal contact resistance as well as shunting the resistance of the single-crystal extrinsic base region. Oxide from the sidewall of the polysilicon local interconnection is selectively removed prior to silicide formation. Therefore, selected sidewalls of the poly interconnect layer also becomes silicided. This results in significant reductions in resistance of the interconnection, particularly for submicron geometries. Improved techniques for forming field oxide regions and for forming base regions of bipolar transistors are also disclosed.
    Type: Grant
    Filed: May 7, 1992
    Date of Patent: September 7, 1993
    Assignee: National Semiconductor Corporation
    Inventors: Alan G. Solheim, Christopher S. Blair, Vida Ilderem, Ali A. Iranmanesh
  • Patent number: 5231042
    Abstract: A method for formation of silicide structures on a semiconductor device. Oxide sidewalls are formed upon and selectively removed from polysilicon contacts. Refractory metal is deposited and heated, unreacted metal is removed, leaving a metal silicide on selected polysilicon sidewalls.
    Type: Grant
    Filed: February 13, 1992
    Date of Patent: July 27, 1993
    Assignee: National Semiconductor Corporation
    Inventors: Vida Ilderem, Alan G. Solheim, Rick C Jerome
  • Patent number: 5219784
    Abstract: A contact structure and a method for fabrication is disclosed for a semiconductor device that includes a plurality of semiconductor regions along the surface of the device, each region having a top surface and at least a sidewall surface, where a first part of the semiconductor regions are of a first conductivity type and a second part of semiconductor regions are of a second conductivity type. Select dielectric spacers are formed along the sidewalls of the select semiconductor regions of first conductivity type while a refractory metal such as titanium, molybdenum or tungsten is used to form contact on the sidewalls of the semiconductor regions of second conductivity type. This structure is most advantageous in bipolar, CMOS and BiCMOS transistor structures as it allows the formation of the sidewall spacers on emitter/gate contacts while having local metal interconnects with the reactive metal on the sidewall of the select base/source/drain contacts.
    Type: Grant
    Filed: April 2, 1990
    Date of Patent: June 15, 1993
    Assignee: National Semiconductor Corporation
    Inventor: Alan G. Solheim
  • Patent number: 5139961
    Abstract: A high performance bipolar transistor and a method of fabrication. Base resistance is reduced by a self-aligned silicide formed in the single-crystal region of the extrinsic base, thereby eliminating the polysilicon to single-crystal contact resistance as well as shunting the resistance of the single-crystal extrinsic base region. Oxide from the sidewall of the polysilicon local interconnection is selectively removed prior to silicide formation. Therefore, selected sidewalls of the poly interconnect layer also becomes silicided. This results in significant reductions in resistance of the interconnection, particularly for sub-micron geometries. Improved techniques for forming field oxide regions and for forming base regions of bipolar transistors are also disclosed.
    Type: Grant
    Filed: April 2, 1990
    Date of Patent: August 18, 1992
    Assignee: National Semiconductor Corporation
    Inventors: Alan G. Solheim, Bamdad Bastani, James L. Bouknight, George E. Ganschow, Bancherd Delong, Rajeeva Lahri, Steve M. Leibiger, Christopher S. Blair, Rick C. Jerome, Madan Biswal, Tad Davies, Vida Ilderem, Ali A. Iranmanesh