Patents by Inventor Alan Glen Solheim

Alan Glen Solheim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10027435
    Abstract: In an automatically switched optical network operating according to a wavelength plan, the wavelengths are assigned to an optical path based on availability, performance and SRS wavelength coupling reduction. First, the wavelengths are grouped in static bins based on their reach versus cost performance, and each bin assumes a ?Q of a middle wavelength. Then, the bins are moved into subsets of dynamic bins, constructed using bin constraints that account for the particulars of the respective optical path. The path is characterized taking into account the wavelength currently accessing at the end nodes, and the wavelength tandeming through the end nodes. Wavelength selection starts with the bins that satisfy the maximum number of constraints, and the wavelengths are checked sequentially against wavelength constraints; relaxed constraints are also applied when it is not possible to exactly satisfy one or more constraints.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: July 17, 2018
    Assignee: Alcatel Lucent
    Inventors: John Peter Guy, Peter David Roorda, Alan Glen Solheim, Kevan Peter Jones, Greg Peter Friesen
  • Patent number: 8995833
    Abstract: In an automatically switched optical network operating according to a wavelength plan, the wavelengths are assigned to an optical path based on availability, performance and SRS wavelength coupling reduction. First, the wavelengths are grouped in static bins based on their reach versus cost performance, and each bin assumes a ?Q of a middle wavelength. Then, the bins are moved into subsets of dynamic bins, constructed using bin constraints that account for the particulars of the respective optical path. The path is characterized taking into account the wavelength currently accessing at the end nodes, and the wavelength tandeming through the end nodes. Wavelength selection starts with the bins that satisfy the maximum number of constraints, and the wavelengths are checked sequentially against wavelength constraints; relaxed constraints are also applied when it is not possible to exactly satisfy one or more constraints.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: March 31, 2015
    Assignee: Alcatel Lucent
    Inventors: John Peter Guy, Peter David Roorda, Alan Glen Solheim, Kevan Peter Jones, Greg Peter Friesen
  • Publication number: 20150055953
    Abstract: In an automatically switched optical network operating according to a wavelength plan, the wavelengths are assigned to an optical path based on availability, performance and SRS wavelength coupling reduction. First, the wavelengths are grouped in static bins based on their reach versus cost performance, and each bin assumes a ?Q of a middle wavelength. Then, the bins are moved into subsets of dynamic bins, constructed using bin constraints that account for the particulars of the respective optical path. The path is characterized taking into account the wavelength currently accessing at the end nodes, and the wavelength tandeming through the end nodes. Wavelength selection starts with the bins that satisfy the maximum number of constraints, and the wavelengths are checked sequentially against wavelength constraints; relaxed constraints are also applied when it is not possible to exactly satisfy one or more constraints.
    Type: Application
    Filed: November 3, 2014
    Publication date: February 26, 2015
    Applicant: Alcatel-Lucent USA Inc.
    Inventors: John Peter Guy, Peter David Roorda, Alan Glen Solheim, Kevan Peter Jones, Greg Peter Friesen
  • Patent number: 8942565
    Abstract: The path selection and wavelength assignment to a selected path are performed by mapping the wavelength reach to the demand distribution (agile reach) resulting in a 50-60% increase in the network reach. The network reach is further increased (about 2.2 times) when on-line measured performance data are used for path selection and wavelength assignment. The connections may be engineered/upgraded individually, by optimizing the parameters of the entire path or of a regenerator section of the respective path. The upgrades include changing the wavelength, adjusting the parameters of the regenerator section, controlling the launch powers, mapping a certain transmitter and/or receiver to the respective wavelength, selecting the wavelengths on a certain link so as to reduce cross-talk, increasing wavelength spacing, etc.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: January 27, 2015
    Assignee: Alcatel Lucent
    Inventors: Alan Glen Solheim, Peter David Roorda, Kevan Peter Jones, Greg Peter Friesen
  • Publication number: 20130330081
    Abstract: The path selection and wavelength assignment to a selected path are performed by mapping the wavelength reach to the demand distribution (agile reach) resulting in a 50-60% increase in the network reach. The network reach is further increased (about 2.2 times) when on-line measured performance data are used for path selection and wavelength assignment. The connections may be engineered/upgraded individually, by optimizing the parameters of the entire path or of a regenerator section of the respective path. The upgrades include changing the wavelength, adjusting the parameters of the regenerator section, controlling the launch powers, mapping a certain transmitter and/or receiver to the respective wavelength, selecting the wavelengths on a certain link so as to reduce cross-talk, increasing wavelength spacing, etc.
    Type: Application
    Filed: August 13, 2013
    Publication date: December 12, 2013
    Applicant: Alcatel Lucent
    Inventors: Alan Glen Solheim, Peter David Roorda, Kevan Peter Jones, Greg Peter Friesen
  • Patent number: 8526812
    Abstract: The path selection and wavelength assignment to a selected path are performed by mapping the wavelength reach to the demand distribution (agile reach) resulting in a 50-60% increase in the network reach. The network reach is further increased (about 2.2 times) when on-line measured performance data are used for path selection and wavelength assignment. The connections may be engineered/upgraded individually, by optimizing the parameters of the entire path or of a regenerator section of the respective path. The upgrades include changing the wavelength, adjusting the parameters of the regenerator section, controlling the launch powers, mapping a certain transmitter and/or receiver to the respective wavelength, selecting the wavelengths on a certain link so as to reduce cross-talk, increasing wavelength spacing, etc.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: September 3, 2013
    Assignee: Alcatel Lucent
    Inventors: Alan Glen Solheim, Peter David Roorda, Kevan Peter Jones, Greg Peter Friesen
  • Patent number: 8396359
    Abstract: A method for engineering of a connection in a WDM photonic network with a plurality of flexibility sites connected by links comprises calculating a physical end-to-end route between a source node and a destination node and setting-up a communication path along this end-to-end route. An operational parameter of the communication path is continuously tested and compared with a test threshold. The path is declared established whenever the operational parameter is above the margin tolerance. The established path is continuously monitored by comparing the operational parameter with a maintenance threshold. A regenerator is switched into the path whenever the operational parameter is under the respective threshold, or another path is assigned to the respective connection. An adaptive channel power turn-on procedure provides for increasing gradually the power level of the transmitters in the path while measuring an error quantifier at the destination receiver until a preset error quantifier value is reached.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: March 12, 2013
    Assignee: Alcatel Lucent
    Inventors: Jingyu Zhou, Alan Glen Solheim, Robert Au-Yang, Mark Stephen Wight, Christian Scheerer
  • Publication number: 20120251103
    Abstract: The path selection and wavelength assignment to a selected path are performed by mapping the wavelength reach to the demand distribution (agile reach) resulting in a 50-60% increase in the network reach. The network reach is further increased (about 2.2 times) when on-line measured performance data are used for path selection and wavelength assignment. The connections may be engineered/upgraded individually, by optimizing the parameters of the entire path or of a regenerator section of the respective path. The upgrades include changing the wavelength, adjusting the parameters of the regenerator section, controlling the launch powers, mapping a certain transmitter and/or receiver to the respective wavelength, selecting the wavelengths on a certain link so as to reduce cross-talk, increasing wavelength spacing, etc.
    Type: Application
    Filed: June 8, 2012
    Publication date: October 4, 2012
    Inventors: Alan Glen Solheim, Peter David Roorda, Kevan Peter Jones, Greg Peter Friesen
  • Patent number: 8265481
    Abstract: The path selection and wavelength assignment to a selected path are performed by mapping the wavelength reach to the demand distribution (agile reach) resulting in a 50-60% increase in the network reach. The network reach is further increased (about 2.2 times) when on-line measured performance data are used for path selection and wavelength assignment. The connections may be engineered/upgraded individually, by optimizing the parameters of the entire path or of a regenerator section of the respective path. The upgrades include changing the wavelength, adjusting the parameters of the regenerator section, controlling the launch powers, mapping a certain transmitter and/or receiver to the respective wavelength, selecting the wavelengths on a certain link so as to reduce cross-talk, increasing wavelength spacing, etc.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: September 11, 2012
    Assignee: Alcatel Lucent
    Inventors: Alan Glen Solheim, Peter David Roorda, Kevan Peter Jones, Greg Peter Friesen
  • Publication number: 20110182576
    Abstract: A method for engineering of a connection in a WDM photonic network with a plurality of flexibility sites connected by links comprises calculating a physical end-to-end route between a source node and a destination node and setting-up a communication path along this end-to-end route. An operational parameter of the communication path is continuously tested and compared with a test threshold. The path is declared established whenever the operational parameter is above the margin tolerance. The established path is continuously monitored by comparing the operational parameter with a maintenance threshold. A regenerator is switched into the path whenever the operational parameter is under the respective threshold, or another path is assigned to the respective connection. An adaptive channel power turn-on procedure provides for increasing gradually the power level of the transmitters in the path while measuring an error quantifier at the destination receiver until a preset error quantifier value is reached.
    Type: Application
    Filed: March 8, 2011
    Publication date: July 28, 2011
    Inventors: Jingyu Zhou, Alan Glen Solheim, Robert Au-Yang, Mark Stephen Wight, Christian Scheerer
  • Publication number: 20110158647
    Abstract: The path selection and wavelength assignment to a selected path are performed by mapping the wavelength reach to the demand distribution (agile reach) resulting in a 50-60% increase in the network reach. The network reach is further increased (about 2.2 times) when on-line measured performance data are used for path selection and wavelength assignment. The connections may be engineered/upgraded individually, by optimizing the parameters of the entire path or of a regenerator section of the respective path. The upgrades include changing the wavelength, adjusting the parameters of the regenerator section, controlling the launch powers, mapping a certain transmitter and/or receiver to the respective wavelength, selecting the wavelengths on a certain link so as to reduce cross-talk, increasing wavelength spacing, etc.
    Type: Application
    Filed: March 10, 2011
    Publication date: June 30, 2011
    Inventors: Alan Glen Solheim, Peter David Roorda, Kevan Peter Jones, Greg Peter Friesen
  • Patent number: 7941047
    Abstract: A method for engineering of a connection in a WDM photonic network with a plurality of flexibility sites connected by links comprises calculating a physical end-to-end route between a source node and a destination node and setting-up a communication path along this end-to-end route. An operational parameter of the communication path is continuously tested and compared with a test threshold. The path is declared established whenever the operational parameter is above the margin tolerance. The established path is continuously monitored by comparing the operational parameter with a maintenance threshold. A regenerator is switched into the path whenever the operational parameter is under the respective threshold, or another path is assigned to the respective connection. An adaptive channel power turn-on procedure provides for increasing gradually the power level of the transmitters in the path while measuring an error quantifier at the destination receiver until a preset error quantifier value is reached.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: May 10, 2011
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Jingyu Zhou, Alan Glen Solheim, Robert Au-Yang, Mark Stephen Wight, Christian Scheerer
  • Patent number: 7929861
    Abstract: The path selection and wavelength assignment to a selected path are performed by mapping the wavelength reach to the demand distribution (agile reach) resulting in a 50-60% increase in the network reach. The network reach is further increased (about 2.2 times) when on-line measured performance data are used for path selection and wavelength assignment. The connections may be engineered/upgraded individually, by optimizing the parameters of the entire path or of a regenerator section of the respective path. The upgrades include changing the wavelength, adjusting the parameters of the regenerator section, controlling the launch powers, mapping a certain transmitter and/or receiver to the respective wavelength, selecting the wavelengths on a certain link so as to reduce cross-talk, increasing wavelength spacing, etc.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: April 19, 2011
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Alan Glen Solheim, Peter David Roorda, Kevan Peter Jones, Greg Peter Friesen
  • Publication number: 20100183299
    Abstract: The path selection and wavelength assignment to a selected path are performed by mapping the wavelength reach to the demand distribution (agile reach) resulting in a 50-60% increase in the network reach. The network reach is further increased (about 2.2 times) when on-line measured performance data are used for path selection and wavelength assignment. The connections may be engineered/upgraded individually, by optimizing the parameters of the entire path or of a regenerator section of the respective path. The upgrades include changing the wavelength, adjusting the parameters of the regenerator section, controlling the launch powers, mapping a certain transmitter and/or receiver to the respective wavelength, selecting the wavelengths on a certain link so as to reduce cross-talk, increasing wavelength spacing, etc.
    Type: Application
    Filed: March 30, 2010
    Publication date: July 22, 2010
    Inventors: Alan Glen Solheim, Peter David Roorda, Kevan Peter Jones, Greg Peter Friesen
  • Patent number: 7715721
    Abstract: The path selection and wavelength assignment to a selected path are performed by mapping the wavelength reach to the demand distribution (agile reach) resulting in a 50-60% increase in the network reach. The network reach is further increased (about 2.2 times) when on-line measured performance data are used for path selection and wavelength assignment. The connections may be engineered/upgraded individually, by optimizing the parameters of the entire path or of a regenerator section of the respective path. The upgrades include changing the wavelength, adjusting the parameters of the regenerator section, controlling the launch powers, mapping a certain transmitter and/or receiver to the respective wavelength, selecting the wavelengths on a certain link so as to reduce cross-talk, increasing wavelength spacing, etc.
    Type: Grant
    Filed: December 12, 2001
    Date of Patent: May 11, 2010
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Alan Glen Solheim, Peter David Roorda, Kevan Peter Jones, Greg Peter Friesen
  • Publication number: 20100028006
    Abstract: In an automatically switched optical network operating according to a wavelength plan, the wavelengths are assigned to an optical path based on availability, performance and SRS wavelength coupling reduction. First, the wavelengths are grouped in static bins based on their reach versus cost performance, and each bin assumes a ?Q of a middle wavelength. Then, the bins are moved into subsets of dynamic bins, constructed using bin constraints that account for the particulars of the respective optical path. The path is characterized taking into account the wavelength currently accessing at the end nodes, and the wavelength tandeming through the end nodes. Wavelength selection starts with the bins that satisfy the maximum number of constraints, and the wavelengths are checked sequentially against wavelength constraints; relaxed constraints are also applied when it is not possible to exactly satisfy one or more constraints.
    Type: Application
    Filed: October 9, 2009
    Publication date: February 4, 2010
    Inventors: John Peter Guy, Peter David Roorda, Alan Glen Solheim, Kevan Peter Jones, Greg Peter Friesen
  • Patent number: 7630635
    Abstract: In an automatically switched optical network operating according to a wavelength plan, the wavelengths are assigned to an optical path based on availability, performance and SRS wavelength coupling reduction. First, the wavelengths are grouped in static bins based on their reach versus cost performance, and each bin assumes a ?Q of a middle wavelength. Then, the bins are moved into subsets of dynamic bins, constructed using bin constraints that account for the particulars of the respective optical path. The path is characterized taking into account the wavelength currently accessing at the end nodes, and the wavelength tandeming through the end nodes. Wavelength selection starts with the bins that satisfy the maximum number of constraints, and the wavelengths are checked sequentially against wavelength constraints; relaxed constraints are also applied when it is not possible to exactly satisfy one or more constraints.
    Type: Grant
    Filed: March 19, 2003
    Date of Patent: December 8, 2009
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: John Peter Guy, Peter David Roorda, Alan Glen Solheim, Kevan Peter Jones, Greg Peter Friesen
  • Patent number: 7200331
    Abstract: The is directed to extending wavelength routing on a metro network subtended off an optical agile network. Flexibility on the subtended metro network is obtained by either tuning the head-end transmitter on a metro wavelength that is the operating wavelength of the route to a specified tail-end node (tunable source, fixed wavelength-route dependency) or/and tuning a specified route to the metro wavelength (fixed source, tunable wavelength-route dependency). The routes may be tuned at one or both ends.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: April 3, 2007
    Assignee: Lucent Technologies Inc.
    Inventors: Peter David Roorda, Alan Glen Solheim
  • Patent number: 7190902
    Abstract: A wavelength exerciser is used for evaluating connections in an agile network. The exerciser operates at some or all switching nodes of the network, by first detecting the paths available between the respective node and all remaining nodes. For each available path, the exerciser selects some or all wavelengths that can carry the traffic all the way along the path. It can operate both during SLAT and/or during network normal operation. When the network carries live traffic, the wavelengths used on the test connections are wavelengths that are not used at the respective moment by the user traffic. The exerciser verifies the switch architecture and the access architecture, and also collects information about the performance of all paths, so as to speed-up the path-connection matching process and to increase the chances of successfully establishing the connection along the selected path.
    Type: Grant
    Filed: December 12, 2001
    Date of Patent: March 13, 2007
    Assignee: Lucent Technologies Inc.
    Inventors: Alan Glen Solheim, Kevan Peter Jones
  • Patent number: 7106966
    Abstract: The integrated photonic switch can be used in all-optical networks. incoming multiplexed signals from a number of input fiber ports are separated into their component wavelengths. Individual wavelengths are switched within the switch fabric towards the desired output, and the wavelengths are then multiplexed into WDM signals directed to the appropriate output ports. The multiplexer and demultiplexer are diffraction grating devices, integrated with the switch fabric. The switch fabric includes two matrices of 3-D MEMS mirrors arranged in the same plane, or in two parallel planes. The optical path between the input ports, the demultiplexer and the input matrix is pre-set so that each wavelength is incident on a certain mirror. Similarly, the geometry of the output matrix, the multiplexer and the output ports determines uniquely the wavelengths on a certain port.
    Type: Grant
    Filed: June 1, 2000
    Date of Patent: September 12, 2006
    Assignee: Nortel Networks Limited
    Inventors: Frederick J. Lalonde, Peter D. Roorda, Alan Glen Solheim