Patents by Inventor Alan L. Wintenberg

Alan L. Wintenberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8115179
    Abstract: A preamplifier circuit for processing a signal provided by a radiation detector includes a transimpedance amplifier coupled to receive a current signal from a detector and generate a voltage signal at its output. A second amplification stage has an input coupled to an output of the transimpedance amplifier for providing an amplified voltage signal. Detector electronics include a preamplifier circuit having a first and second transimpedance amplifier coupled to receive a current signal from a first and second location on a detector, respectively, and generate a first and second voltage signal at respective outputs. A second amplification stage has an input coupled to an output of the transimpedance amplifiers for amplifying the first and said second voltage signals to provide first and second amplified voltage signals.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: February 14, 2012
    Assignee: UT-Battelle
    Inventors: Richard A. Riedel, Alan L. Wintenberg, Lloyd G. Clonts, Ronald G. Cooper
  • Publication number: 20110001055
    Abstract: A preamplifier circuit for processing a signal provided by a radiation detector includes a transimpedance amplifier coupled to receive a current signal from a detector and generate a voltage signal at its output. A second amplification stage has an input coupled to an output of the transimpedance amplifier for providing an amplified voltage signal. Detector electronics include a preamplifier circuit having a first and second transimpedance amplifier coupled to receive a current signal from a first and second location on a detector, respectively, and generate a first and second voltage signal at respective outputs. A second amplification stage has an input coupled to an output of the transimpedance amplifiers for amplifying the first and said second voltage signals to provide first and second amplified voltage signals.
    Type: Application
    Filed: September 15, 2010
    Publication date: January 6, 2011
    Applicant: UT-Battelle, LLC
    Inventors: Richard A. Riedel, Alan L. Wintenberg, Lloyd G. Clonts, Ronald G. Cooper
  • Patent number: 7800439
    Abstract: A preamplifier circuit for processing a signal provided by a radiation detector includes a transimpedance amplifier coupled to receive a current signal from a detector and generate a voltage signal at its output. A second amplification stage has an input coupled to an output of the transimpedance amplifier for providing an amplified voltage signal. Detector electronics include a preamplifier circuit having a first and second transimpedance amplifier coupled to receive a current signal from a first and second location on a detector, respectively, and generate a first and second voltage signal at respective outputs. A second amplification stage has an input coupled to an output of the transimpedance amplifiers for amplifying the first and said second voltage signals to provide first and second amplified voltage signals.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: September 21, 2010
    Assignee: Ut-Battelle, LLC
    Inventors: Richard A. Riedel, Alan L. Wintenberg, Lloyd G. Clonts, Ronald G. Cooper
  • Publication number: 20090224835
    Abstract: A preamplifier circuit for processing a signal provided by a radiation detector includes a transimpedance amplifier coupled to receive a current signal from a detector and generate a voltage signal at its output. A second amplification stage has an input coupled to an output of the transimpedance amplifier for providing an amplified voltage signal. Detector electronics include a preamplifier circuit having a first and second transimpedance amplifier coupled to receive a current signal from a first and second location on a detector, respectively, and generate a first and second voltage signal at respective outputs. A second amplification stage has an input coupled to an output of the transimpedance amplifiers for amplifying the first and said second voltage signals to provide first and second amplified voltage signals.
    Type: Application
    Filed: October 27, 2006
    Publication date: September 10, 2009
    Inventors: Richard A. Riedel, Alan L. Wintenberg, Lloyd G. Clonts, Ronald G. Cooper
  • Patent number: 6864802
    Abstract: A fully integrated wireless spread-spectrum sensor incorporating all elements of an “intelligent” sensor on a single circuit chip is capable of telemetering data to a receiver. Synchronous control of all elements of the chip provides low-cost, low-noise, and highly robust data transmission, in turn enabling the use of low-cost monolithic receivers.
    Type: Grant
    Filed: August 29, 2001
    Date of Patent: March 8, 2005
    Assignee: UT-Battelle, LLC
    Inventors: Stephen F. Smith, Gary W. Turner, Alan L. Wintenberg, Michael Steven Emery
  • Publication number: 20020075163
    Abstract: A fully integrated wireless spread-spectrum sensor incorporating all elements of an “intelligent” sensor on a single circuit chip is capable of telemetering data to a receiver. Synchronous control of all elements of the chip provides low-cost, low-noise, and highly robust data transmission, in turn enabling the use of low-cost monolithic receivers.
    Type: Application
    Filed: August 29, 2001
    Publication date: June 20, 2002
    Inventors: Stephen F. Smith, Gary W. Turner, Alan L. Wintenberg, Michael Steven Emery
  • Patent number: 5965873
    Abstract: A spectrometer, comprises: a semiconductor having a silicon substrate, the substrate having integrally formed thereon a plurality of layers forming photo diodes, each of the photo diodes having an independent spectral response to an input spectra within a spectral range of the semiconductor and each of the photo diodes formed only from at least one of the plurality of layers of the semiconductor above the substrate; and, a signal processing circuit for modifying signals from the photo diodes with respective weights, the weighted signals being representative of a specific spectral response. The photo diodes have different junction depths and different polycrystalline silicon and oxide coverings. The signal processing circuit applies the respective weights and sums the weighted signals.
    Type: Grant
    Filed: May 20, 1998
    Date of Patent: October 12, 1999
    Assignee: Lockheed Martin Energy Research Corporation
    Inventors: Michael L. Simpson, M. Nance Ericson, William B. Dress, Gerald E. Jellison, David N. Sitter, Jr., Alan L. Wintenberg
  • Patent number: 5225682
    Abstract: A radiation detection method and system for continuously correcting the quantization of detected charge during pulse pile-up conditions. Charge pulses from a radiation detector responsive to the energy of detected radiation events are converted to voltage pulses of predetermined shape whose peak amplitudes are proportional to the quantity of charge of each corresponding detected event by means of a charge-sensitive preamplifier. These peak amplitudes are sampled and stored sequentially in accordance with their respective times of occurrence. Based on the stored peak amplitudes and times of occurrence, a correction factor is generated which represents the fraction of a previous pulses influence on a preceding pulse peak amplitude. This correction factor is subtracted from the following pulse amplitude in a summing amplifier whose output then represents the corrected charge quantity measurement.
    Type: Grant
    Filed: January 24, 1992
    Date of Patent: July 6, 1993
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Charles L. Britton, Jr., Alan L. Wintenberg