Patents by Inventor Alan R. Reinberg

Alan R. Reinberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6444572
    Abstract: The invention provides methods for forming contact openings to a substrate location with which electrical connection is desired. According to one aspect, a multi-level layer comprising masking material or photoresist is formed atop an electrically conductive substrate surface and defines a mask opening through which a contact opening is to be formed to an elevationally lower substrate location. A single layer of photoresist is patterned to form an elevationally thicker first layer immediately laterally adjacent the mask opening than a second layer which is formed laterally outward of the first layer. The electrically conductive substrate surface is etched through the mask opening to form the contact opening. The photoresist second layer is removed and the conductive substrate surface is etched to form a portion of an outer conductive component. Thereafter, conductive material is formed in the contact opening to electrically connect elevationally separated layers.
    Type: Grant
    Filed: May 21, 2001
    Date of Patent: September 3, 2002
    Assignee: Micron Technology Inc.
    Inventors: Zhiqiang Wu, Alan R. Reinberg, Manny Ma
  • Patent number: 6432793
    Abstract: A metal oxide layer may made more highly oxidized by exposing the layer to sulfur trioxide. The leakage current of the layer may thereby be decreased, providing a capacitor containing such a layer with improved performance properties. The capacitor may be incorporated into a dynamic random access memory cell or other structure useful in the semiconductor or other industry.
    Type: Grant
    Filed: December 12, 1997
    Date of Patent: August 13, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Alan R. Reinberg
  • Patent number: 6429125
    Abstract: A microelectronic device fabricating method includes providing a substrate having a beveled portion and forming a layer of structural material on the beveled portion. Some of the structural material can be removed from the beveled portion by anisotropic etching to form a device feature from the structural material. The device feature can be formed on the beveled portion as with a pair of spaced, adjacent barrier material lines that are substantially void of residual shorting stringers extending therebetween. Structural material can be removed from the beveled portion to form an edge defined feature on a substantially perpendicular edge of the substrate. The beveled portion and perpendicular edge can be part of a mandril. The mandril can be removed from the substrate after forming the edge defined feature.
    Type: Grant
    Filed: February 7, 2001
    Date of Patent: August 6, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Alan R. Reinberg
  • Publication number: 20020086479
    Abstract: Methods of forming capacitors and resultant capacitor structures are described. In one embodiment, a capacitor storage node layer is formed over a substrate and has an uppermost rim defining an opening into an interior volume. At least a portion of the rim is capped by forming a material which is different from the capacitor storage node layer over the rim portion. After the rim is capped, a capacitor dielectric region and a cell electrode layer are formed over the storage node layer. In another embodiment, a capacitor storage node layer is formed within a container which is received within an insulative material. A capacitor storage node layer is formed within the container and has an outer surface. A layer of material is formed within less than the entire capacitor container and covers less than the entire capacitor storage node layer outer surface. The layer of material comprises a material which is different from the insulative material within which the capacitor container is formed.
    Type: Application
    Filed: February 22, 2002
    Publication date: July 4, 2002
    Inventor: Alan R. Reinberg
  • Patent number: 6414376
    Abstract: Stress resulting from silicon nitride is diminished by forming an oxidation mask with silicon nitride having a graded silicon concentration. Grading is accomplished by changing the silicon content in the silicon nitride by varying the amount of hydride, such as dichlorosilane (DCS), mixed with ammonia. The silicon nitride can be graded in a substantially linear or non-linear fashion. Silicon nitride formed with higher levels of DCS mixed with ammonia is referred to as silicon rich nitride because of its relatively higher silicon content. In one embodiment, the graded silicon nitride may be formed with one type of non-linear silicon grading, an abrupt junction. In other embodiments, the silicon nitride is formed in a variety of shapes fashioned during or after silicon nitride growth. In one embodiment, the stress from the silicon nitride is reduced by forming a polysilicon buffer layer between two silicon nitride layers.
    Type: Grant
    Filed: February 19, 1999
    Date of Patent: July 2, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Randhir P. S. Thakur, Kevin G. Donohoe, Zhiqiang Wu, Alan R. Reinberg
  • Patent number: 6403493
    Abstract: A microelectronic device fabricating method includes providing a substrate having a beveled portion and forming a layer of structural material on the beveled portion. Some of the structural material can be removed from the beveled portion by anisotropic etching to form a device feature from the structural material. The device feature can be formed on the beveled portion as with a pair of spaced, adjacent barrier material lines that are substantially void of residual shorting stringers extending therebetween. Structural material can be removed from the beveled portion to form an edge defined feature on a substantially perpendicular edge of the substrate. The beveled portion and perpendicular edge can be part of a mandril. The mandril can be removed from the substrate after forming the edge defined feature.
    Type: Grant
    Filed: March 12, 2001
    Date of Patent: June 11, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Alan R. Reinberg
  • Patent number: 6403442
    Abstract: Methods of forming capacitors and resultant capacitor structures are described. In one embodiment, a capacitor storage node layer is formed over a substrate and has an uppermost rim defining an opening into an interior volume. At least a portion of the rim is capped by forming a material which is different from the capacitor storage node layer over the rim portion. After the rim is capped, a capacitor dielectric region and a cell electrode layer are formed over the storage node layer. In another embodiment, a capacitor storage node layer is formed within a container which is received within an insulative material. A capacitor storage node layer is formed within the container and has an outer surface. A layer of material is formed within less than the entire capacitor container and covers less than the entire capacitor storage node layer outer surface. The layer of material comprises a material which is different from the insulative material within which the capacitor container is formed.
    Type: Grant
    Filed: September 2, 1999
    Date of Patent: June 11, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Alan R. Reinberg
  • Publication number: 20020045313
    Abstract: Methods of forming capacitors, methods of forming capacitor-over-bit line memory circuitry, and related integrated circuitry constructions are described. In one embodiment, a capacitor storage node is formed having an uppermost surface and an overlying insulative material over the uppermost surface. Subsequently, a capacitor dielectric functioning region is formed discrete from the overlying insulative material operably proximate at least a portion of the capacitor storage node. A cell electrode layer is formed over the capacitor dielectric functioning region and the overlying insulative material. In another embodiment, a capacitor storage node is formed having an uppermost surface and a side surface joined therewith. A protective cap is formed over the uppermost surface and a capacitor dielectric layer is formed over the side surface and protective cap. A cell electrode layer is formed over the side surface of the capacitor storage node.
    Type: Application
    Filed: September 14, 2001
    Publication date: April 18, 2002
    Inventors: Tyler A. Lowrey, Luan C. Tran, Alan R. Reinberg, D. Mark Durcan
  • Publication number: 20020039826
    Abstract: Methods of forming capacitors and resultant capacitor structures are described. In one embodiment, a capacitor storage node layer is formed over a substrate and has an uppermost rim defining an opening into an interior volume. At least a portion of the rim is capped by forming a material which is different from the capacitor storage node layer over the rim portion. After the rim is capped, a capacitor dielectric region and a cell electrode layer are formed over the storage node layer. In another embodiment, a capacitor storage node layer is formed within a container which is received within an insulative material. A capacitor storage node layer is formed within the container and has an outer surface. A layer of material is formed within less than the entire capacitor container and covers less than the entire capacitor storage node layer outer surface. The layer of material comprises a material which is different from the insulative material within which the capacitor container is formed.
    Type: Application
    Filed: November 20, 2001
    Publication date: April 4, 2002
    Inventor: Alan R. Reinberg
  • Publication number: 20020030221
    Abstract: Container structures for use in integrated circuits and methods of their manufacture. The container structures have a dielectric cap on the top of a conductive container to reduce the risk of container-to-container shorting by insulating against bridging of conductive debris across the tops of adjacent container structures. The container structures are adapted for use in memory cells and apparatus incorporating such memory cells, as well as other integrated circuits.
    Type: Application
    Filed: August 30, 2001
    Publication date: March 14, 2002
    Applicant: Micron Technology, Inc.
    Inventors: Gurtej Singh Sandhu, Alan R. Reinberg
  • Publication number: 20020030220
    Abstract: Container structures for use in integrated circuits and methods of their manufacture. The container structures have a dielectric cap on the top of a conductive container to reduce the risk of container-to-container shorting by insulating against bridging of conductive debris across the tops of adjacent container structures. The container structures are adapted for use in memory cells and apparatus incorporating such memory cells, as well as other integrated circuits.
    Type: Application
    Filed: August 30, 2001
    Publication date: March 14, 2002
    Applicant: Micron Technology, Inc.
    Inventors: Gurtej Singh Sandhu, Alan R. Reinberg
  • Patent number: 6355551
    Abstract: The invention proposes methods for producing integrated circuits wherein the dielectric constant between closely spaced and adjacent metal lines is approaching 1. One method of the invention uses low-melting-point dielectric to form a barrier form a void between conductive lines. Another method of the invention uses sidewall film to form a similar barrier.
    Type: Grant
    Filed: March 21, 2000
    Date of Patent: March 12, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Alan R. Reinberg
  • Patent number: 6356500
    Abstract: A memory device and method employing a scheme for reduced power consumption is disclosed. By dividing a memory array sector into memory sub arrays, the memory device can provide power to memory sub arrays that need to be powered up or, in the alternative, powered down. This reduces the power consumption and heat generation associated with high speed and high capacity memory devices.
    Type: Grant
    Filed: August 23, 2000
    Date of Patent: March 12, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Eugene H. Cloud, Kie Y. Ahn, Leonard Forbes, Paul A. Farrar, Kevin G. Donohoe, Alan R. Reinberg, David J. Mcelroy, Luan C. Tran, Joseph Geusic
  • Patent number: 6348125
    Abstract: An apparatus and a method for photoreducing copper oxide layers from semiconductor wafers during the processes of forming interconnects in advanced IC manufacturing. The apparatus comprises a reaction chamber with a high intensity UV light source and a wafer holder in the chamber. The UV light source is made of arrays of microdischarge devices fabricated on a semiconductor wafer where each of the microdischarge devices has the structure of a hollow cathode. Multiple arrays of microdischarge devices can be assembled together to make a planar UV lamp so as to provide a sufficient area for the UV illumination. The wafer holder in the chamber is made rotatable for a better uniformity during the photoreduction process. A non-oxidizing gas is flowed into the chamber to prevent instant and subsequent oxidation on the copper surface.
    Type: Grant
    Filed: January 17, 2000
    Date of Patent: February 19, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Joseph E. Geusic, Alan R. Reinberg
  • Publication number: 20020004296
    Abstract: The electrical and thermal contact fabricated by forming a first layer on a surface of a semiconductor device, depositing a dielectric layer adjacent the first layer, patterning the dielectric layer to define an insulator component, and forming a second layer adjacent the insulator component and in partial contact with the first layer. The first layer contacts an adjacent structure of the semiconductor device. The first and second layers may be patterned separately or simultaneously to respectively define an intermediate conductive layer, which communicates with ths contacted structure, and a contact layer. Due to its structure, which requires relatively little electrical current to generate a desired amount of heat, the electrical and thermal contact effectively contains heat within and prevents heat from dissipating from a contacted structure, and is particularly useful for contacting and inducing a change in the electrical conductivity of structures which include phase change materials.
    Type: Application
    Filed: August 27, 2001
    Publication date: January 10, 2002
    Inventor: Alan R. Reinberg
  • Publication number: 20020001960
    Abstract: Methods are disclosed for forming shaped structures from silicon and/or germanium containing material with a material removal process that is selective to low stress portions of the material. In general, the method initially provides a layer of the material on a semiconductor substrate. The material, which has uniform stress therein, is then masked, and the stress in a portion of the material is reduced, such as by implanting ions into an unmasked portion. The mask is removed, and the high stress masked portion of the material is selectively removed, preferably by an etching process. The low stress portion of the material remains and forms a shaped structure. One preferred selective etching process uses a basic etchant. The various methods are used to form raised shaped structures, shaped openings, polysilicon plugs, capacitor storage nodes, surround-gate transistors, free-standing walls, interconnect lines, trench capacitors, and trench isolation regions.
    Type: Application
    Filed: July 16, 2001
    Publication date: January 3, 2002
    Inventors: Zhiqiang Wu, Li Li, Thomas A. Figura, Kunal R. Parekh, Pai-Hung Pan, Alan R. Reinberg, Kin F. Ma
  • Publication number: 20010052612
    Abstract: Memory integrated circuitry includes an array of memory cells formed over a semiconductive substrate and occupying area thereover, at least some memory cells of the array being formed in lines of active area formed within the semiconductive substrate which are continuous between adjacent memory cells, said adjacent memory cells being isolated from one another relative to the continuous active area formed therebetween by a conductive line formed over said continuous active area between said adjacent memory cells. At least some adjacent lines of continuous active area within the array are isolated from one another by LOCOS field oxide formed therebetween. The respective area consumed by individual of said adjacent memory cells is ideally equal to less than 8F2, where “F” is no greater than 0.
    Type: Application
    Filed: August 14, 2001
    Publication date: December 20, 2001
    Inventors: Luan Tran, Alan R. Reinberg
  • Publication number: 20010053096
    Abstract: Structures and methods involving n-channel flash memories with an ultrathin tunnel oxide thickness, have been provided. Both the write and erase operations are performed by tunneling. According to the teachings of the present invention, the n-channel flash memory cell with thin tunnel oxides will operate on a dynamic basis. The stored data can be refreshed every few seconds as necessary. However, the write and erase operations will however now be orders of magnitude faster than traditional n-channel flash memory and the cell provides a large gain. The present invention further provides structures and methods for n-channel floating gate transistors which avoid n-channel threshold voltage shifts and achieve source side tunneling erase. The n-channel memory cell structure includes a floating gate separated from a channel region by an oxide layer of less than 50 Angstroms (Å).
    Type: Application
    Filed: June 15, 2001
    Publication date: December 20, 2001
    Applicant: Micron Technology, Inc.
    Inventors: Leonard Forbes, Luan C. Tran, Alan R. Reinberg, Joseph E. Geusic, Kie Y. Ahn, Paul A. Farrar, Eugene H. Cloud, David J. McElroy
  • Publication number: 20010048138
    Abstract: A microelectronic device fabricating method includes providing a substrate having a mean global outer surface extending along a plane. A first portion is formed over the substrate comprising a straight linear segment which is angled from the plane and forming a second portion over the substrate comprising a straight linear segment which is angled from the plane at a different angle than the first portion. A layer of structural material is formed over the first and second portions. The structural material layer is anisotropically etched and a first device feature is ultimately left over the first portion having a first base width and a second device feature is ultimately left over the second portion having a second base width which is different from the first base width. Integrated circuitry includes a substrate having a mean global outer surface extending along a plane.
    Type: Application
    Filed: May 23, 2001
    Publication date: December 6, 2001
    Inventor: Alan R. Reinberg
  • Publication number: 20010046741
    Abstract: A method of defining at least two different field effect transistor channel lengths includes forming a channel defining layer over a substrate, the semiconductor substrate having a mean global outer surface extending along a plane. First and second openings are etched into the channel defining layer. The first and second openings respectively have a pair of opposing sidewalls having substantially straight linear segments which are angled from the plane. The straight linear segments of the opposing sidewalls of the first opening are angled differently from the plane than the straight linear segments of the opposing sidewalls of the second opening and are thereby of different lengths. Integrated circuitry includes a first field effect transistor and a second field effect transistor. The first and second field effect transistors have respective channel lengths defined along their gate dielectric layers and respectively have at least some portion which is substantially straight linear.
    Type: Application
    Filed: June 27, 2001
    Publication date: November 29, 2001
    Inventor: Alan R. Reinberg