Patents by Inventor Alan Wayne Brown

Alan Wayne Brown has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11855526
    Abstract: An improved method for zero-voltage switching (ZVS) of a voltage-fed half-bridge using a variable dead band is provided. The duration of the dead band is determined dynamically and is precisely long enough to ensure the absence of shoot-through events while also minimizing or eliminating switching losses and reverse conduction losses. The method generally includes: (a) calculating the equivalent capacitance as seen by the current source charging the midpoint of the half-bridge; (b) calculating the ZVS charge requirement based on the link voltage and the equivalent capacitance; (c) calculating the charge delivered by the current source over time during a dead band vector, equating the result to the ZVS charge requirement, and solving for the ZVS time requirement at each commutation point over the switching cycle; and (d) updating the dead bands for each commutation of each half-bridge in the switched-mode power converter.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: December 26, 2023
    Assignee: HELLA GmbH & Co. KGaA
    Inventors: Philip Michael Johnson, Alan Wayne Brown
  • Patent number: 11502612
    Abstract: A power converter is provided. The power converter includes two or more hybrid switching circuits electrically connected to a source or storage element. Each switching circuit includes a wide bandgap device that is parallel-connected to a silicon-based device. The converter further includes a controller that is operatively coupled to each device of the first and second switching circuits. The controller is configured to operate each hybrid switching circuit by (i) activating the silicon-based device for an activation period, (ii) activating the wide bandgap device for a predetermined duty cycle less than the activation period, (iii) deactivating the silicon-based device while the wide bandgap device is activated, and (iv) deactivating the wide bandgap device. The hybrid switching circuits are sequentially operated to convert an alternating current of a power supply into a link voltage for a power converter, for example.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: November 15, 2022
    Assignee: HELLA GmbH & Co. KGaA
    Inventors: Alan Wayne Brown, Philip Michael Johnson
  • Patent number: 11277072
    Abstract: Multi-phase-shift control of a power converter is provided. The power converter includes a dual-active-bridge (DAB) converter having a transformer, a first H-bridge coupled to the primary winding of the transformer, and a second H-bridge coupled to the secondary winding of the transformer. The DAB converter is operable to generate two-level and three-level voltage waveforms on the primary winding and on the secondary winding to yield a system which ensures zero-voltage switching and unity power factor over a wide range of input and output voltage levels and power throughputs. In a multi-phase shift (MPS) mode of operation, the DAB converter changes from a two-level voltage in at least one of the windings to a three-level voltage in both windings in response to the instantaneous load being below a predetermined level, resulting in more efficient performance of the DAB converter in light load conditions.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: March 15, 2022
    Assignee: HELLA GmbH & Co. KGaA
    Inventors: Allan Ray Taylor, Alan Wayne Brown, Philip Michael Johnson
  • Publication number: 20210399624
    Abstract: A converter for electrical connection to a three-phase electrical grid and a single-phase electrical grid is provided. The converter includes three DAB modules, each for converting a respective alternating current of a three-phase electrical grid. When connected to a single-phase electrical grid, the third DAB module is bi-directional such that it is operable to filter the power output of the first and second DAB modules. The converter further includes a filter capacitor in electrical communication with the third DAB module through a relay, wherein the relay is responsive to a controller to couple the third DAB module to the filter capacitor when the single-phase electrical grid is detected and to couple the third DAB module to a grid rectifier when the three-phase electrical grid is detected.
    Type: Application
    Filed: October 23, 2019
    Publication date: December 23, 2021
    Inventors: Alan Wayne Brown, Philip Michael Johnson
  • Publication number: 20210391784
    Abstract: An improved method for zero-voltage switching (ZVS) of a voltage-fed half-bridge using a variable dead band is provided. The duration of the dead band is determined dynamically and is precisely long enough to ensure the absence of shoot-through events while also minimizing or eliminating switching losses and reverse conduction losses. The method generally includes: (a) calculating the equivalent capacitance as seen by the current source charging the midpoint of the half-bridge; (b) calculating the ZVS charge requirement based on the link voltage and the equivalent capacitance; (c) calculating the charge delivered by the current source over time during a dead band vector, equating the result to the ZVS charge requirement, and solving for the ZVS time requirement at each commutation point over the switching cycle; and (d) updating the dead bands for each commutation of each half-bridge in the switched-mode power converter.
    Type: Application
    Filed: October 23, 2019
    Publication date: December 16, 2021
    Inventors: Philip Michael Johnson, Alan Wayne Brown
  • Publication number: 20210313872
    Abstract: A power converter is provided. The power converter includes two or more hybrid switching circuits electrically connected to a source or storage element. Each switching circuit includes a wide bandgap device that is parallel-connected to a silicon-based device. The converter further includes a controller that is operatively coupled to each device of the first and second switching circuits. The controller is configured to operate each hybrid switching circuit by (i) activating the silicon-based device for an activation period, (ii) activating the wide bandgap device for a predetermined duty cycle less than the activation period, (iii) deactivating the silicon-based device while the wide bandgap device is activated, and (iv) deactivating the wide bandgap device. The hybrid switching circuits are sequentially operated to convert an alternating current of a power supply into a link voltage for a power converter, for example.
    Type: Application
    Filed: August 7, 2019
    Publication date: October 7, 2021
    Inventors: Alan Wayne Brown, Philip Michael Johnson
  • Publication number: 20200266714
    Abstract: Multi-phase-shift control of a power converter is provided. The power converter includes a dual-active-bridge (DAB) converter having a transformer, a first H-bridge coupled to the primary winding of the transformer, and a second H-bridge coupled to the secondary winding of the transformer. The DAB converter is operable to generate two-level and three-level voltage waveforms on the primary winding and on the secondary winding to yield a system which ensures zero-voltage switching and unity power factor over a wide range of input and output voltage levels and power throughputs. In a multi-phase shift (MPS) mode of operation, the DAB converter changes from a two-level voltage in at least one of the windings to a three-level voltage in both windings in response to the instantaneous load being below a predetermined level, resulting in more efficient performance of the DAB converter in light load conditions.
    Type: Application
    Filed: September 28, 2018
    Publication date: August 20, 2020
    Inventors: Allan Ray Taylor, Alan Wayne Brown, Philip Michael Johnson
  • Patent number: 10686385
    Abstract: An apparatus includes a controller, a switching block, and a three-phase bidirectional AC/DC converter. The switching block has a first interface connected to a power grid, a second interface connected to an electric motor, and a third interface connected to the three-phase bidirectional AC/DC converter that includes first, second, and third single-phase AC/DC conversion modules, and which have inputs and outputs joined at an output node, and a respective transformer configured to provide electrical isolation. In a first mode of operation, the switching block connects the power grid to the AC/DC converter for charging a battery connected to the output node and disconnects the electric motor. In a second mode of operation, the switching block disconnects the power grid and connects the electric motor to the AC/DC converter which is controlled to convert DC power drawn from the battery to energize the electric motor.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: June 16, 2020
    Assignee: HELLA GmbH & Co. KGaA
    Inventors: Alan Wayne Brown, Hua Bai
  • Patent number: 10491132
    Abstract: A control circuit for converting an unbalanced grid voltage into a DC voltage is provided. The control circuit includes a controller having a voltage detection module, a first transformation module, a level shift module, and a second transformation module. The voltage detection module provides voltage component values indicating the voltage in each phase of a three-phase AC power supply. The first transformation module converts the voltage component values from a stationary reference frame into reference voltage signals in a rotating reference frame using a Clarke-Park transform. The level shift module compensates the reference voltage signals to simulate a balanced three-phase AC voltage. The second transformation module converts the compensated reference voltage signals from the rotating reference frame to the stationary reference frame using an inverse Clarke-Park transform.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: November 26, 2019
    Assignee: HELLA GmbH & Co., KGaA
    Inventors: Philip Michael Johnson, Alan Wayne Brown
  • Publication number: 20190052182
    Abstract: A single stage DAB control circuit for converting an unbalanced grid voltage into a DC voltage is provided. The control circuit includes a controller having a voltage detection module, a first transformation module, a level shift module, and a second transformation module. The voltage detection module provides voltage component values that are indicative of the voltage in each phase of a three-phase AC power supply. The first transformation module converts the voltage component values from a stationary reference frame into reference voltage signals in a rotating reference frame using a Clarke-Park transform. The level shift module compensates the reference voltage signals to simulate an ideal or balanced three-phase AC voltage. The second transformation module converts the compensated reference voltage signals from the rotating reference frame to the stationary reference frame using an inverse Clarke-Park transform.
    Type: Application
    Filed: August 10, 2018
    Publication date: February 14, 2019
    Inventors: Philip Michael Johnson, Alan Wayne Brown
  • Publication number: 20180278168
    Abstract: An apparatus includes a controller, a switching block, and a three-phase bidirectional AC/DC converter. The switching block has a first interface connected to a power grid, a second interface connected to an electric motor, and a third interface connected to the three-phase bidirectional AC/DC converter that includes first, second, and third single-phase AC/DC conversion modules, and which have inputs and outputs joined at an output node, and a respective transformer configured to provide electrical isolation. In a first mode of operation, the switching block connects the power grid to the AC/DC converter for charging a battery connected to the output node and disconnects the electric motor. In a second mode of operation, the switching block disconnects the power grid and connects the electric motor to the AC/DC converter which is controlled to convert DC power drawn from the battery to energize the electric motor.
    Type: Application
    Filed: March 8, 2018
    Publication date: September 27, 2018
    Inventors: Alan Wayne Brown, Hua Bai
  • Patent number: 9939833
    Abstract: Embodiments of the invention relate generally to power management and the like, and more particularly, to an apparatus, a system, a method, and a computer-readable medium for providing power controlling functionality to generate configurable power signals and to deliver power during fault conditions. In at least some embodiments, a power control unit can generate power signals having configurable attributes as a function of a mode of operation, a fault type, and the like.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: April 10, 2018
    Assignee: Global Embedded Technologies, Inc.
    Inventors: Mark Stanley Stanczak, Louis Stephen Smutek, Alan Wayne Brown, David Allen Backus
  • Patent number: 9710004
    Abstract: Embodiments of the invention relate generally to power management and the like, and more particularly, to an apparatus, a system, a method, and a computer-readable medium for providing power controlling functionality to generate configurable power signals and to deliver power during fault conditions. In at least some embodiments, a power control unit can generate power signals having configurable attributes as a function of a mode of operation, a fault type, and the like.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: July 18, 2017
    Assignee: Global Embedded Technologies, Inc.
    Inventors: Mark Stanley Stanczak, Louis Stephen Smutek, Alan Wayne Brown, David Allen Backus
  • Patent number: 9696352
    Abstract: A switching device is controlled by a microprocessor to selectively configure the circuit between a current measurement mode and a calibration mode. When the switch is set to the “on” state, the circuit acts as a normal prior art circuit, with the output Vout being read by the microprocessor to determine the current to the load. However, when the switch is set to the “off” state, a small value resistor (which may be roughly three orders of magnitude greater than Rshunt) connects the inputs of the measuring circuit so that the circuit can generate an output Vout corresponding to the zero load current. By connecting the V+ and V? inputs together with a low resistance resistor, the no-load condition Vdiff=V+?V??0 applies. In this state, the no-load offset can be determined by measuring the output voltage of the circuit without turning off the load.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: July 4, 2017
    Assignee: Hella Corporate Center USA, Inc.
    Inventors: Alan Wayne Brown, Mark Allen Enderich, Stanley Smith
  • Patent number: 9244475
    Abstract: Embodiments of the invention relate generally to power management and the like, and more particularly, to an apparatus, a system, a method, and a computer-readable medium for providing power controlling functionality to generate configurable power signals and to deliver power during fault conditions. In at least some embodiments, a power control unit can generate power signals having configurable attributes as a function of a mode of operation, a fault type, and the like.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: January 26, 2016
    Assignee: Global Embedded Technologies, Inc.
    Inventors: Mark Stanley Stanczak, Louis Stephen Smutek, Alan Wayne Brown, David Allen Backus
  • Publication number: 20150142196
    Abstract: Embodiments of the invention relate generally to power management and the like, and more particularly, to an apparatus, a system, a method, and a computer-readable medium for providing power controlling functionality to generate configurable power signals and to deliver power during fault conditions. In at least some embodiments, a power control unit can generate power signals having configurable attributes as a function of a mode of operation, a fault type, and the like.
    Type: Application
    Filed: November 18, 2013
    Publication date: May 21, 2015
    Applicant: Global Embedded Technologies, Inc.
    Inventors: Mark Stanley Stanczak, Louis Stephen Smutek, Alan Wayne Brown, David Allen Backus
  • Publication number: 20150022184
    Abstract: A switching device is controlled by a microprocessor to selectively configure the circuit between a current measurement mode and a calibration mode. When the switch is set to the “on” state, the circuit acts as a normal prior art circuit, with the output Vout being read by the microprocessor to determine the current to the load. However, when the switch is set to the “off” state, a small value resistor (which may be roughly three orders of magnitude greater than Rshunt) connects the inputs of the measuring circuit so that the circuit can generate an output Vout corresponding to the zero load current. By connecting the V+ and V? inputs together with a low resistance resistor, the no-load condition Vdiff=V+?V??0 applies. In this state, the no-load offset can be determined by measuring the output voltage of the circuit without turning off the load.
    Type: Application
    Filed: July 15, 2014
    Publication date: January 22, 2015
    Inventors: Alan Wayne Brown, Mark Allen Enderich, Stanley Smith
  • Publication number: 20140195062
    Abstract: Embodiments of the invention relate generally to power management and the like, and more particularly, to an apparatus, a system, a method, and a computer-readable medium for providing power controlling functionality to generate configurable power signals and to deliver power during fault conditions. In at least some embodiments, a power control unit can generate power signals having configurable attributes as a function of a mode of operation, a fault type, and the like.
    Type: Application
    Filed: January 6, 2014
    Publication date: July 10, 2014
    Applicant: Global Embedded Technologies, Inc.
    Inventors: Mark Stanley Stanczak, Louis Stephen Smutek, Alan Wayne Brown, David Allen Backus
  • Publication number: 20140195061
    Abstract: Embodiments of the invention relate generally to power management and the like, and more particularly, to an apparatus, a system, a method, and a computer-readable medium for providing power controlling functionality to generate configurable power signals and to deliver power during fault conditions. In at least some embodiments, a power control unit can generate power signals having configurable attributes as a function of a mode of operation, a fault type, and the like.
    Type: Application
    Filed: January 6, 2014
    Publication date: July 10, 2014
    Applicant: Global Embedded Technologies, Inc.
    Inventors: Mark Stanley Stanczak, Louis Stephen Smutek, Alan Wayne Brown, David Allen Backus
  • Patent number: 8634966
    Abstract: Embodiments of the invention relate generally to power management and the like, and more particularly, to an apparatus, a system, a method, and a computer-readable medium for providing power controlling functionality to generate configurable power signals and to deliver power during fault conditions. In at least some embodiments, a power control unit can generate power signals having configurable attributes as a function of a mode of operation, a fault type, and the like.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: January 21, 2014
    Assignee: Global Embedded Technologies, Inc.
    Inventors: Mark Stanley Stanczak, Louis Stephen Smutek, Alan Wayne Brown, David Allen Backus